已知圓的方程為.設該圓過點的最長弦和最短弦分別為AC和BD,則四邊形ABCD的面積為       

解析試題分析:化為標準方程為,其圓心為半徑為.
該圓過點的最長弦和最短弦分別為,即圖中互相垂直的直徑與弦.
,故的面積為.

考點:圓的方程,圓的幾何性質.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

已知圓(xa)2+(yb)2r2的圓心為拋物線y2=4x的焦點,且與直線3x+4y+2=0相切,則該圓的方程為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

若圓與圓外切,則的值為_______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

在極坐標系中,設曲線的交點分別為,則       .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知圓,直線,給出下面四個命題:
①對任意實數(shù),直線和圓有公共點;
②對任意實數(shù),必存在實數(shù),使得直線與和圓相切;
③對任意實數(shù),必存在實數(shù),使得直線與和圓相切;
④存在實數(shù),使得圓上有一點到直線的距離為3.
其中正確的命題是              (寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

直線與圓相交于,兩點,若,則實數(shù)的值是_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

是圓上的動點,是直線上的動點,則的最小值為 ________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知圓過直線和圓的交點,且原點在圓上.則圓的方程為            

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知圓與直線都相切,且圓心在直線上,則圓的方程為                       .

查看答案和解析>>

同步練習冊答案