(本小題滿分12分)袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為.現(xiàn)有甲、乙兩人從袋中輪流摸取1個球,甲先取,乙后取,然后甲再取,,取后不放回,直到兩人中有一人取到白球時即終止,每個球在每一次被取出的機(jī)會是等可能的.求:
(1)則袋中原有白球的個數(shù);
(2)取球2次終止的概率;
(3)甲取到白球的概率

解:(1)(設(shè)袋中原有個白球,由題意知  
所以,解得舍去.即袋中原有3個白球. …………………4分
(2)記“取球2次終止”的事件為A.      …………………8分
(3)記“甲取到白球”的事件為B,“第次取到的球是白球”的事件為,因為甲先取,所以甲只有可能在第1次、第3次和第5次取球,則 .
因為事件兩兩互斥,所以 
…………………………………12分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)點A為半徑是1的圓O上一定點,在圓周上等可能地任取一點B.
(1)求弦AB的長超過圓內(nèi)接正三角形邊長的概率;
(2)求弦AB的長超過圓半徑的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)關(guān)于x的一元二次方程x2+2ax+b2=0.
(Ⅰ)若a是從0,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.
(Ⅱ)若a是從區(qū)間[0,3]任取的一個數(shù),b是從區(qū)間[0,2]任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在奧運會射箭決賽中,參賽號碼為1~4號的四名射箭運動員參加射箭比賽.
(Ⅰ)通過抽簽將他們安排到1~4號靶位,試求恰有兩名運動員所抽靶位號與其參賽號碼相同的概率;
(Ⅱ)記1號、2號射箭運動員射箭的環(huán)數(shù)為所有取值為0,1,2,3...,10)的概率分別為、.根據(jù)教練員提供的資料,其概率分布如下表:


0
1
2
3
4
5
6
7
8
9
10

0
0
0
0
0.06
0.04
0.06
0.3
0.2
0.3
0.04

0
0
0
0
0.04
0.05
0.05
0.2
0.32
0.32
0.02
①1,2號運動員各射箭一次,求兩人中至少有一人命中9環(huán)的概率;
②判斷1號,2號射箭運動員誰射箭的水平高?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

教室內(nèi)有5個學(xué)生,分別佩戴1號到5號的;眨芜x3人記錄他們的;仗柎a。
(1)求最小號碼為2的概率;(2)求三個號碼中至多有一個偶數(shù)的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

( 12分)
甲、乙、丙三人參加了一家公司的招聘面試,面試合格者可正式簽約,甲表示只要面試合格就簽約.乙、丙則約定:兩人面試都合格就一同簽約,否則兩人都不簽約.設(shè)甲面試合格的概率為,乙、丙面試合格的概率都是,且面試是否合格互不影響.求:
(1)至少有1人面試合格的概率;
(2)簽約人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(10分)將一顆骰子(它的六個面分別標(biāo)有點數(shù)1,2,3,4,5,6)先后拋擲兩次,觀察向上的點數(shù),求:兩數(shù)之積是6的倍數(shù)的概率;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分) 甲、乙兩位籃球運動員進(jìn)行定點投藍(lán),每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(1)求甲至多命中2個且乙至少命中2個的概率;
(2)若規(guī)定每投籃一次命中得3分,未命中得分,求乙所得分?jǐn)?shù)的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知盤中有編號為A,B,C,D的4個紅球,4個黃球,4個白球(共 12個球)現(xiàn)從中摸出4個球(除編號與顏色外球沒有區(qū)別) (12分)
(1)求掐好包含字母A, B,C,D的概率;
(2)設(shè)摸出的4個球中出現(xiàn)的顏色種數(shù)為隨機(jī)變量X.求X的分布列和期望E(X).

查看答案和解析>>

同步練習(xí)冊答案