(12分) 甲、乙兩位籃球運動員進行定點投藍,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為
(1)求甲至多命中2個且乙至少命中2個的概率;
(2)若規(guī)定每投籃一次命中得3分,未命中得分,求乙所得分數(shù)的概率分布和數(shù)學(xué)期望.

解:(1)設(shè)“甲至多命中2個球”為事件A,“乙至少命中兩個球”為事件B,由題意得,

∴甲至多命中2個球且乙至少命中2個球的概率為                 ———————————————————4分
(2),分布列如下:       5分
P(=-4)=   P(=0)=  P(=4)=
P(=8)=    P(=12)=         8分
10分
                       12分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
甲乙兩名射手互不影響地進行射擊訓(xùn)練,根據(jù)以往的數(shù)據(jù)統(tǒng)計,他們設(shè)計成績的分布列如下:

射手甲
射手乙
環(huán)數(shù)
8
9
10
環(huán)數(shù)
8
9
10
概率



概率



(Ⅰ)若甲乙兩射手各射擊兩次,求四次射擊中恰有三次命中10環(huán)的概率;
(Ⅱ)若兩個射手各射擊1次,記所得的環(huán)數(shù)之和為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)袋中裝有黑球和白球共7個,從中任取2個球都是白球的概率為.現(xiàn)有甲、乙兩人從袋中輪流摸取1個球,甲先取,乙后取,然后甲再取,,取后不放回,直到兩人中有一人取到白球時即終止,每個球在每一次被取出的機會是等可能的.求:
(1)則袋中原有白球的個數(shù);
(2)取球2次終止的概率;
(3)甲取到白球的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

車站每天8∶00~9∶00,9∶00~10∶00都恰有一輛客車到站,8∶00~9∶00到站的客車A可能在8∶10,8∶30,8∶50到站,其概率依次為;9∶00~10∶00到站的客車B可能在9∶10,9∶30,9∶50到站,其概率依次為.
(1)旅客甲8∶00到站,設(shè)他的候車時間為,求的分布列和
(2)旅客乙8∶20到站,設(shè)他的候車時間為,求的分布列和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)
檢測部門決定對某市學(xué)校教室的空氣質(zhì)量進行檢測,空氣質(zhì)量分為A、B、C三級.
每間教室的檢測方式如下:分別在同一天的上、下午各進行一次檢測,若兩次檢測中有C級或兩次都是B級,則該教室的空氣質(zhì)量不合格.  設(shè)各教室的空氣質(zhì)量相互獨立,且每次檢測的結(jié)果也相互獨立.    根據(jù)多次抽檢結(jié)果,一間教室一次檢測空氣質(zhì)量為A、B、C三級的頻率依次為,,.
(1) 在該市的教室中任取一間,估計該間教室空氣質(zhì)量合格的概率;
(2) 如果對該市某中學(xué)的4間教室進行檢測,記在上午檢測空氣質(zhì)量為A級的教室間數(shù)為X,并以空氣質(zhì)量為A級的頻率作為空氣質(zhì)量為A級的概率,求X的分布列及期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

執(zhí)行如圖所示的程序框圖,如果輸入,則輸出的的值為

A.7 B.9 C.2 D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一個均勻的正四面體的四個面上分別涂有1,2,3,4四個數(shù)字,現(xiàn)隨機投擲兩次,正四面體面朝下的數(shù)字分別為,記
(1)分別求出取得最大值和最小值時的概率; (2)的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

將3張不同的奧運會門票分給10名同學(xué)中的3人,每人1張,則不同的分法種數(shù)有(  )

A.2610 B.720 C.240 D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

同室四人各寫一張賀卡,先集中起來,然后每人從中拿一張別人送出的賀卡,則四張賀卡的不同的分配方式有________種.

查看答案和解析>>

同步練習(xí)冊答案