【題目】已知函數(shù),

)求函數(shù)的最小值.

)是否存在一次函數(shù),使得對(duì)于,總有,且成立?若存在,求出的表達(dá)式;若不存在,說(shuō)明理由.

【答案】.(

【解析】試題分析(1)表示出,用導(dǎo)數(shù)判斷其單調(diào)性,根據(jù)單調(diào)性即可求出最小值;
(2)由()知,從而得,于是h(x)可表示為關(guān)于k的一次函數(shù),根據(jù)f(x)≥h(x)恒成立可求得k值,從而可求得h(x)表達(dá)式,再驗(yàn)證h(x))≥g(x)對(duì)一切x>0恒成立即可;

試題解析: 的定義域?yàn)?/span>, ,

易知時(shí), 時(shí),

上單調(diào)遞減,在上單調(diào)遞增,

當(dāng)時(shí), 取得最小值為

)由()知, ,

所以,

故可證,代入,

恒成立,

,

, ,

設(shè),則,

當(dāng)時(shí), ,當(dāng)時(shí), ,

上單調(diào)遞減,在上單調(diào)遞增,

,

對(duì)一切恒成立,

綜上,存在一次函數(shù),使得對(duì)于,總有,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知, 為實(shí)數(shù),函數(shù),函數(shù)

(1) 當(dāng)時(shí),令,若恒成立,求實(shí)數(shù)的取值范圍;

(2) 當(dāng)時(shí),令,是否存在實(shí)數(shù),使得對(duì)于函數(shù)定義域中的任意實(shí)數(shù),均存在實(shí)數(shù),有成立?若存在,求出實(shí)數(shù)的取值集合;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某花店每天以每枝元的價(jià)格從農(nóng)場(chǎng)購(gòu)進(jìn)若干枝玫瑰花,然后以每枝元的價(jià)格出售.如果當(dāng)天賣(mài)不完,剩下的玫瑰花做垃圾處理.

(1)若花店一天購(gòu)進(jìn)枝玫瑰花,求當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:枝, )的函數(shù)解析式.

(2)花店記錄了天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量

頻數(shù)

假設(shè)花店在這天內(nèi)每天購(gòu)進(jìn)枝玫瑰花,求這天的日利潤(rùn)(單位:元)的平均數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)當(dāng)時(shí),證明:對(duì)任意的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年某市政府為了有效改善市區(qū)道路交通擁堵?tīng)顩r出臺(tái)了一系列的改善措施,其中市區(qū)公交站點(diǎn)重新布局和建設(shè)作為重點(diǎn)項(xiàng)目.市政府相關(guān)部門(mén)根據(jù)交通擁堵情況制訂了“市區(qū)公交站點(diǎn)重新布局方案”,現(xiàn)準(zhǔn)備對(duì)該“方案”進(jìn)行調(diào)查,并根據(jù)調(diào)查結(jié)果決定是否啟用該“方案”.調(diào)查人員分別在市區(qū)的各公交站點(diǎn)隨機(jī)抽取若干市民對(duì)該“方案”進(jìn)行評(píng)分,并將結(jié)果繪制成如圖所示的頻率分布直方圖.相關(guān)規(guī)則為:①調(diào)查對(duì)象為本市市民,被調(diào)查者各自獨(dú)立評(píng)分;②采用百分制評(píng)分,[60,80)內(nèi)認(rèn)定為滿(mǎn)意,不低于80分認(rèn)定為非常滿(mǎn)意;③市民對(duì)公交站點(diǎn)布局的滿(mǎn)意率不低于75%即可啟用該“方案”;④用樣本的頻率代替概率.

(1)從該市800萬(wàn)人的市民中隨機(jī)抽取5人,求恰有2人非常滿(mǎn)意該“方案”的概率;并根據(jù)所學(xué)統(tǒng)計(jì)學(xué)知識(shí)判斷該市是否啟用該“方案”,說(shuō)明理由.

(2)已知在評(píng)分低于60分的被調(diào)查者中,老年人占,現(xiàn)從評(píng)分低于60分的被調(diào)查者中按年齡分層抽取9人以便了解不滿(mǎn)意的原因,并從中抽取3人擔(dān)任群眾督查員,記為群眾督查員中的老人的人數(shù),求隨機(jī)變量的分布列及其數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問(wèn)題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問(wèn)各出幾何?此問(wèn)題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說(shuō):“我羊所吃的禾苗只有馬的一半.”馬主人說(shuō):“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , 依次成公比為2的等比數(shù)列,且

B. , , 依次成公比為2的等比數(shù)列,且

C. , 依次成公比為的等比數(shù)列,且

D. , , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問(wèn)題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問(wèn)各出幾何?此問(wèn)題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說(shuō):“我羊所吃的禾苗只有馬的一半.”馬主人說(shuō):“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )

A. , 依次成公比為2的等比數(shù)列,且

B. , 依次成公比為2的等比數(shù)列,且

C. , 依次成公比為的等比數(shù)列,且

D. , , 依次成公比為的等比數(shù)列,且

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某基地蔬菜大棚采用水培、無(wú)土栽培方式種植各類(lèi)蔬菜過(guò)去50周的資料顯示,該地周光照量(小時(shí))都在30小時(shí)以上,其中不足50小時(shí)的周數(shù)有5周,不低于50小時(shí)且不超過(guò)70小時(shí)的周數(shù)有35周,超過(guò)70小時(shí)的周數(shù)有10周.根據(jù)統(tǒng)計(jì),該基地的西紅柿增加量(百斤)與使用某種液體肥料(千克)之間對(duì)應(yīng)數(shù)據(jù)為如圖所示的折線(xiàn)圖

(1)依據(jù)數(shù)據(jù)的折線(xiàn)圖,是否可用線(xiàn)性回歸模型擬合的關(guān)系?請(qǐng)計(jì)算相關(guān)系數(shù)并加以說(shuō)明(精確到0.01).(,則線(xiàn)性相關(guān)程度很高,可用線(xiàn)性回歸模型擬合)

(2)蔬菜大棚對(duì)光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運(yùn)行臺(tái)數(shù)受周光照量限制,并有如下關(guān)系:

周光照量(單位:小時(shí))

光照控制儀最多可運(yùn)行臺(tái)數(shù)

3

2

1

若某臺(tái)光照控制儀運(yùn)行,則該臺(tái)光照控制儀周利潤(rùn)為3000元;若某臺(tái)光照控制儀未運(yùn)行,則該臺(tái)光照控制儀周虧損1000元若商家安裝了3臺(tái)光照控制儀,求商家在過(guò)去50周周總利潤(rùn)的平均值.

附:相關(guān)系數(shù)公式,參考數(shù)據(jù),

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知向量,設(shè),向量

(1)若,求向量的夾角;

(2)若 對(duì)任意實(shí)數(shù)都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案