在同一坐標(biāo)系中,函數(shù)y=2-x與函數(shù)y=log2x的圖象可能是( 。
A、
B、
C、
D、
考點:函數(shù)的圖象
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)指數(shù)函數(shù)和對數(shù)函數(shù)的圖象和性質(zhì),即可判斷.
解答: 解:∵函數(shù)y=2-x=(
1
2
)x
是減函數(shù),它的圖象位于x軸上方,
y=log2x是增函數(shù),它的圖象位于y軸右側(cè),
觀察四個選項,只有C符合條件,
故選C.
點評:本題考查指數(shù)函數(shù)和對數(shù)函數(shù)的性質(zhì),是基礎(chǔ)題,解題時要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x-
3
y+4=0
,則x2+y2的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2cos2x+sin2x-1,給出下列四個命題:
(1)函數(shù)在區(qū)間[
π
8
,
8
]
上是減函數(shù);
(2)直線x=
π
8
是函數(shù)圖象的一條對稱軸;
(3)函數(shù)f(x)的圖象可由函數(shù)y=
2
sin2x的圖象向左平移
π
4
而得到;
(4)若 x∈[0,
π
2
]
,則f(x)的值域是[0,
2
]

其中正確命題的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=4x2-kx-8在(5,20)上有單調(diào)性,則實數(shù)k的取值范圍是( 。
A、[20,80]
B、(-∞,20]∪[80,+∞)
C、[40,160]
D、(-∞,40]∪[160,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合M={a,b,c},集合N={-1,0,1},由M到N的映射f滿足條件f(a)-f(b)=f(c),則這樣的映射共有( 。
A、5個B、6個C、7個D、8個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是冪函數(shù),且滿足
f(9)
f(3)
=2,則f(
1
9
)
=( 。
A、
1
2
B、
1
4
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)的圖象與y=2x的圖象關(guān)于y軸對稱,若y=f-1(x)是y=f(x)的反函數(shù),則y=f-1(x2-2x)的單調(diào)遞增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+1,g(x)=x2-2x+1.
(Ⅰ)設(shè)集合A={x|f(x)=7},集合B={x|g(x)=4},求A∩B;
(Ⅱ)設(shè)集合C={x|f(x)≤a},集合D={x|g(x)≥x2},若D⊆C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在五面體ABCDEF中,已知DE⊥平面ABCD,AD∥BC,求證:BC∥EF.

查看答案和解析>>

同步練習(xí)冊答案