(本小題滿分12分)

為調(diào)查某市學(xué)生百米運(yùn)動(dòng)成績,從該市學(xué)生中按照男女生比例隨機(jī)抽取50名學(xué)生進(jìn)行百米測試,學(xué)生成績?nèi)慷冀橛?3秒到18秒之間,將測試結(jié)果按如下方式分成五組,第一組,第二組……第五組,如圖是按上述分組方法得到的頻率分布直方圖.

(Ⅰ)求這組數(shù)據(jù)的眾數(shù)和中位數(shù)(精確到0.1);

( II )根據(jù)有關(guān)規(guī)定,成績小于16秒為達(dá)標(biāo).

(ⅰ)用樣本估計(jì)總體,某班有學(xué)生45人,設(shè)

為達(dá)標(biāo)人數(shù),求的數(shù)學(xué)期望與方差.

    (ⅱ)如果男女生使用相同的達(dá)標(biāo)標(biāo)準(zhǔn),則男女

生達(dá)標(biāo)情況如下表

性別

是否達(dá)標(biāo)

合計(jì)

達(dá)標(biāo)

______

_____

不達(dá)標(biāo)

_____

_____

合計(jì)

______

______

 

根據(jù)上表數(shù)據(jù),能否有99%的把握認(rèn)為“體育達(dá)標(biāo)與性別有關(guān)”?若有,你能否提出一個(gè)更好的解決方法來?

 

【答案】

解:(Ⅰ)這組數(shù)據(jù)的眾數(shù)為15.5,中位數(shù)為15.6……………………3分

(Ⅱ)(ⅰ)成績?cè)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052309391104682550/SYS201205230941060156899369_DA.files/image001.png">的頻率:0.04+0.18+0.38=0.6

若用樣本估計(jì)總體,則總體達(dá)標(biāo)的概率為0.6.從而~B(45,0.6)

(人),=10.8-------------7分

(ⅱ)

性別

是否達(dá)標(biāo)

合計(jì)

達(dá)標(biāo)

a=24

b=6

30

不達(dá)標(biāo)

c=8

d=12

20

合計(jì)

32

18

n=50

----------------9分

8.333

由于>6.625,故有99%的把握認(rèn)為“體育達(dá)標(biāo)與性別有關(guān)”

故可以根據(jù)男女生性別劃分達(dá)標(biāo)的標(biāo)準(zhǔn)-----------------------12分

 

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文) (本小題滿分12分已知函數(shù)y=4-2
3
sinx•cosx-2sin2x(x∈R)
,
(1)求函數(shù)的值域和最小正周期;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•自貢三模)(本小題滿分12分>
設(shè)平面直角坐標(biāo)中,O為原點(diǎn),N為動(dòng)點(diǎn),|
ON
|=6,
ON
=
5
OM
.過點(diǎn)M作MM1丄y軸于M1,過N作NN1⊥x軸于點(diǎn)N1,
OT
=
M1M
+
N1N
,記點(diǎn)T的軌跡為曲線C.
(I)求曲線C的方程:
(H)已知直線L與雙曲線C:5x2-y2=36的右支相交于P、Q兩點(diǎn)(其中點(diǎn)P在第-象限).線段OP交軌跡C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直線L的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)已知函數(shù),且。①求的最大值及最小值;②求的在定義域上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009湖南卷文)(本小題滿分12分)

為拉動(dòng)經(jīng)濟(jì)增長,某市決定新建一批重點(diǎn)工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項(xiàng)目的個(gè)數(shù)分別占總數(shù)的、.現(xiàn)有3名工人獨(dú)立地從中任選一個(gè)項(xiàng)目參與建設(shè).求:

(I)他們選擇的項(xiàng)目所屬類別互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人選擇的項(xiàng)目屬于民生工程的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,

(注:利潤與投資單位是萬元)

(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.

查看答案和解析>>

同步練習(xí)冊(cè)答案