設(shè)x,y滿足約束條件
x≥2
3x-y≥1
y≥x+1
,若目標函數(shù)z=ax+by(a>0,b>0)的最小值為2,則
3
a
+
2
b
的最小值為( 。
A、12B、6C、4D、2
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:作出不等式對應的平面區(qū)域,利用z的幾何意義確定取得最小值的條件,然后利用基本不等式進行求則ab的最大值.
解答: 解:由z=ax+by(a>0,b>0)得y=-
a
b
x+
z
b
,
∵a>0,b>0,
∴直線的斜率-
a
b
<0
,
作出不等式對應的平面區(qū)域如圖:
平移直線得y=-
a
b
x+
z
b
,由圖象可知當直線y=-
a
b
x+
z
b
經(jīng)過點A時,直線y=-
a
b
x+
z
b
的截距最小,此時z最。
x=2
y=x+1
,解得
x=2
y=3
,即A(2,3),
此時目標函數(shù)z=ax+by(a>0,b>0)的最小值為2,
即2a+3b=2,
則a+
3b
2
=1,
3
a
+
2
b
=(
3
a
+
2
b
)(a+
3b
2
)=3+3+
9b
2a
+
2a
b
≥6+2
9b
2a
2a
b
=6+6=12

當且僅當
9b
2a
=
2a
b
,即3b=2a,即a=
1
2
,b=
1
3
時取等號.
3
a
+
2
b
的最小值為12,
故選:A
點評:本題主要考查線性規(guī)劃的基本應用,以及基本不等式的應用,利用數(shù)形結(jié)合求出目標函數(shù)取得最大值的條件是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

解不等式:k2+k-9>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若α,β均為銳角,且
cosα
sinβ
+
cosβ
sinα
=2,求證:α+β=
π
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+(1-a)x2-a(a+2)x+b(a,b∈R).
(1)若函數(shù)f(x)的圖象過原點,且在原點處的切線斜率為-3,求a,b的值;
(2)若曲線y=f(x)存在兩條垂直于y軸的切線,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓x2+y2+mx-
1
4
=0與拋物線y2=4x的準線相切,則m=(  )
A、1
B、
3
4
C、
1
2
D、
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知p:-2>-1,q:a-1<a,則下列判斷正確的是(  )
A、“p∧q”為假,“¬p”為假
B、“p∧q”為真,“¬p”為真
C、“p∨q”為真,“¬q”為假
D、“p∨q”為假,“¬q”為真

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(wx+φ),其中w>0,-π<φ<π,若f(x)的最小正周期為6π,且當x=
π
2
時,f(x)取得最大值.
(1)求解析式;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)由y=sinx的圖象如何變換可得到f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△OAB中,延長BA到點C使得
AC
=
BA
,在OB上取點D,使
DB
=
1
3
OB
,DC與OA交于點E,設(shè)
OA
=
a
,
OB
=
b
,則向量
DC
可用
a
,
b
表示為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin2ωx+
3
sinωxsin(ωx+
π
2
)(ω>0)的最小正周期為π.
(1)求f(x).
(2)求f(x)單調(diào)區(qū)間及其對稱中心.

查看答案和解析>>

同步練習冊答案