(1)若關于x的方程2x2-3x+2m=0的兩根均在[-1,1]之間,求m的取值范圍.
(2)若關于x的方程2x2-3x+2m=0在[-1,1]內有解,求m的取值范圍.
考點:一元二次方程的根的分布與系數(shù)的關系
專題:函數(shù)的性質及應用
分析:設函數(shù)f(x)=2x2-3x+2m,利用方程和函數(shù)之間的關系,結合根的分布即可得到結論.
解答: 解:(1)設f(x)=2x2-3x+2m,對稱軸x=
3
4
,
∵方程2x2-3x+2m=0的兩根均在[-1,1]之間,
△=9-16m≥0
f(-1)≥0
f(1)≥0
,即
m≤
9
16
2+3+2m≥0
2-2+2m≥0
,
m≤
9
16
m≥-
5
2
m≥0
,即0≤m≤
9
16

即m的取值范圍0≤m≤
9
16

(2)設f(x)=2x2-3x+2m,則對稱軸x=
3
4
,
若關于x的方程2x2-3x+2m=0在[-1,1]內無解,
則①△<0,即△=9-16m<0,即m
9
16
,
△>0
f(-1)<0
,即
m<
9
16
2+3+2m<0
,
m<
9
16
m>-
5
2
,即-
5
2
<m<
9
16
,
綜上m
9
16
或-
5
2
<m<
9
16

則若x的方程2x2-3x+2m=0在[-1,1]內有解,
則m=
9
16
或m≤-
5
2

即m的取值范圍m=
9
16
或m≤-
5
2
點評:本題主要考查二次方程根的分布,利用方程和函數(shù)之間的關鍵,利用二次函數(shù)的圖象和性質是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=|log2x|-(
1
2
)x
的零點個數(shù)是( 。
A、0B、lC、2D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓M與直線l:x=-
1
2
相切且與圓F:(x-1)2+y2=
1
4
外切.
(1)求圓心M的軌跡C方程;
(2)過定點D(m,0)(m>0)作直線l交軌跡C于A,B兩點,E是D點關于坐標原點O的對稱點,求證:∠AED=∠BED.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知離心率為
2
2
的橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)過點M(
6
,1)

(1)求橢圓C的方程;
(2)過點(1,0)作斜率為2直線l與橢圓相交于A,B兩點,求|AB|的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的首項a1=5,an+1=2an+1,n∈N*
(1)證明:數(shù)列{an+1}是等比數(shù)列;
(2)求{an}的通項公式以及前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點(4,-4)在拋物線C:y2=2px(p>0)上,過焦點F且斜率為k(k>0)的直線交拋物線C于A、B兩點,|AB|=8,線段AB的垂直平分線交x軸于點G.
(Ⅰ)求拋物線C的標準方程;
(Ⅱ)若線段AB的中點為H,求△FGH的外接圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某地區(qū)有小學18所,中學12所,大學6所,現(xiàn)采用分層抽樣的方法從這些學校中抽取6所學校對學生的視力進行調查
(1)求應從小學、中學、大學中分別抽取的學校數(shù)目;
(2)若從抽取的6所學校中隨機的抽取2所學校做進一步的數(shù)據(jù)分析,
  (i)列出所有可能的抽取結果;
  (ii)求抽取的2所學校均為小學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某中學的高二(1)班男同學有45名,女同學有15名,老師按照分層抽樣的方法組建了一個4人的課外興趣小組.
(Ⅰ)求某同學被抽到的概率及課外興趣小組中男、女同學的人數(shù);
(Ⅱ)經(jīng)過一個月的學習、討論,這個興趣小組決定選出兩名同學做某項實驗,方法是先從小組里選出1名同學做實驗,該同學做完后,再從小組內剩下的同學中選一名同學做實驗,求選出的兩名同學中恰有一名女同學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知四棱錐P-ABCD中,底面ABCD為菱形,且AC=AB=BC=2,PA⊥平面ABCD,E,F(xiàn)分別是BC,PC的中點
(1)證明:AE⊥PD;
(2)若H為PD上一點,且AH⊥PD,EH與平面PAD所成角的正切值為
6
2
,求二面角E-AF-C的余弦值.

查看答案和解析>>

同步練習冊答案