(Ⅰ)求證數(shù)學公式;
(Ⅱ)△ABC的三邊a,b,c的倒數(shù)成等差數(shù)列,求證數(shù)學公式

證明:(Ⅰ)要證,只要證 ,
只要證 ,只要證,只要證 14<18 即可.
而14<18顯然成立,故要證的不等式成立.
(Ⅱ)∵△ABC的三邊a,b,c的倒數(shù)成等差數(shù)列,∴=,故b邊不是最大邊,也不是最小邊.
若B≥,則最大邊所對的角大于,這與三角形內(nèi)角和相矛盾,故
分析:(Ⅰ)只要證 ,只要證 ,只要證
(Ⅱ)由于△ABC的三邊a,b,c的倒數(shù)成等差數(shù)列,故b邊不是最大邊,也不是最小邊,故
點評:本題考查用分析法證明不等式,等差數(shù)列的定義,以及三角形中大邊對大角,判斷b邊不是最大邊,也不是最小邊,是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域為(0,+∞),對定義域內(nèi)的任意x,y都有f(xy)=f(x)+f(y)-3
(1)求f(1)的值;
(2)求證:f(x)+f(
1x
)=6(x>0)
;
(3)若x>1時,f(x)<3,判斷f(x)在其定義域上的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在某兩個正數(shù)x,y之間,若插入一個正數(shù)a,使x,a,y成等比數(shù)列;若插入兩個正數(shù)b,c,使x,b,c,y成等差數(shù)列,求證:(a+1)2≤(b+1)(c+1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosθ=
cosα-cosβ
1-cosαcosβ
,求證:tan2
θ
2
=tan2
α
2
cot2
β
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:α,β為銳角,且3sin2α+2sin2β=1,3sin2α-2sin2β=0.求證:α+2β=
π2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B、C同時滿足sinA+sinB+sinC=0,cosA+cosB+cosC=0,求證:cos2A+cos2B+cos2C為定值.

查看答案和解析>>

同步練習冊答案