已知兩條直線 :y="m" 和: y=(m>0),與函數(shù)的圖像從左至右相交于點A,B ,與函數(shù)的圖像從左至右相交于C,D .記線段AC和BD在X軸上的投影長度分別為a ,b ,當m 變化時,的最小值為
A.           B.        C.    D.
B

試題分析:設(shè)A,B,C,D各點的橫坐標分別為xA,xB,xC,xD,依題意可求得為xA,xB,xC,xD的值,a=|xA﹣xC|,b=|xB﹣xD|,利用基本不等式可求得當m變化時,的最小值. 解:設(shè)A,B,C,D各點的橫坐標分別為xA,xB,xC,xD,則﹣log2xA=m,log2xB=m;﹣log2xC=,log2xD=
∴xA=2﹣m,xB=2m,xC=,xD=
∴a=|xA﹣xC|,b=|xB﹣xD|,
==||=2m=
又m>0,∴m+=(2m+1)+≥2=(當且僅當m=時取“=”)∴=8
故選B.
點評:本題考查對數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用,理解平行投影的概念,得到=是關(guān)鍵,考查轉(zhuǎn)化與數(shù)形結(jié)合的思想,考查分析與運算能力,屬于難題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線:上橫坐標為4的點到焦點的距離為5.
(Ⅰ)求拋物線的方程;
(Ⅱ)設(shè)直線與拋物線交于不同兩點,若滿足,證明直線恒過定點,并求出定點的坐標.
(Ⅲ)試把問題(Ⅱ)的結(jié)論推廣到任意拋物線:中,請寫出結(jié)論,不用證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1、F2為雙曲線C:x²-y²=2的左、右焦點,點P在C上,|PF1|=2|PF2|,則cos∠F1PF2=(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)圓的極坐標方程為,以極點為直角坐標系的原點,極軸為軸正半軸,兩坐標系長度單位一致,建立平面直角坐標系.過圓上的一點作平行于軸的直線,設(shè)軸交于點,向量
(Ⅰ)求動點的軌跡方程;
(Ⅱ)設(shè)點 ,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線的極坐標方程為,曲線:上的點到直線的距離為,則的最大值為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知動點在橢圓上,若點坐標為,,且,則的最小值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與拋物線所圍成的圖形面積是(     )
A.20B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知拋物線的準線經(jīng)過橢圓的左焦點,且經(jīng)過拋物線與橢圓兩個交點的弦過拋物線的焦點,則橢圓的離心率為_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知曲線Cy=2x2,點A(0,-2)及點B(3,a),從點A觀察點B,要實現(xiàn)不被曲線C擋住,則實數(shù)a的取值范圍是(  )
A.(4,+∞)B.(-∞,4)
C.(10,+∞)D.(-∞,10)

查看答案和解析>>

同步練習(xí)冊答案