精英家教網 > 高中數學 > 題目詳情

.在△ABC中,角A、B、C所對的邊分別為a、b、c,且c2=a2+b2-ab.
(Ⅰ)求角C;
(Ⅱ)設數學公式數學公式,試求數學公式的最大值.

解:(Ⅰ)由余弦定理得cosC=
又0<C<π∴…(6分)
(Ⅱ)∵
=
由(Ⅰ)知
∴當時,取最大值.…(12分)
分析:(Ⅰ)直接利用余弦定理求出cosC,然后求角C;
(Ⅱ)設,,通過向量的數量積,利用二倍角公式,通過配方法結合角的范圍求出表達式的最大值.
點評:本題考查余弦定理的應用,向量的數量積與二倍角公式的應用,三角函數的最值的求法,考查計算能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,則下列關系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
5
,b=3,sinC=2sinA
,則sinA=
 

查看答案和解析>>

同步練習冊答案