已知復(fù)數(shù)z1=a-2i,z2=b+i,
.
z1
是z1的共軛復(fù)數(shù).若
.
z1
•z2≥-4,則b的取值范圍是
 
考點:復(fù)數(shù)代數(shù)形式的混合運算,復(fù)數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由題意可得
.
z1
=a+2i,再由不等式可得a+2b=0,ab-2≥-4,化簡可得-2b2-2≥-4,由此求得b的范圍.
解答: 解:由題意可得
.
z1
=a+2i,
.
z1
•z2≥-4,
∴(a+2i)(b+i)=ab-2+(a+2b)i≥-4,
∴a+2b=0,ab-2≥-4,
∴-2b2-2≥-4,解得 b2≤1,即-1≤b≤1
故答案為:[-1,1].
點評:本題主要考查復(fù)數(shù)的基本概念,兩個復(fù)數(shù)代數(shù)形式的乘法法則的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

閱讀如圖所示的程序框圖,則輸出的S的值是( 。
A、
9
10
B、
8
9
C、
7
8
D、
6
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|
x-4
1-x
>0},B={x|x2-(a+2)x+2a<0},若A∪B=A,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項和為Sn,a1=3,且3S1,2S2,S3成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log3an,求Tn=b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(
e+x2
-x)(其中e為自然數(shù)對數(shù)的底數(shù)),則f(tan
π
12
)+2f(tanπ)+f(tan
11π
12
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
f(x+2)+2,x<3
2x ,x≥3
,則f(log23)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c分別為△ABC三個內(nèi)角A、B、C的對邊,若acosC+
3
asinC-b=0,則∠A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足:
an+1+an-1
an+1-an+1
=n(n∈N*),且a4=28,則{an}的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,則復(fù)數(shù)z=
-5i
2+3i
在復(fù)平面內(nèi)表示的點位于( 。
A、第四象限B、第三象限
C、第二象限D、第一象限

查看答案和解析>>

同步練習(xí)冊答案