已知函數(shù)(其中),且函數(shù)的圖象在     點(diǎn)處的切線與函數(shù)的圖象在點(diǎn)處的切線重合.
(Ⅰ)求實(shí)數(shù)a,b的值;
(Ⅱ)若,滿足,求實(shí)數(shù)m的取值范圍;

(1),(2)

解析試題分析:解:(Ⅰ)∵,∴,
在點(diǎn)處切線的斜率,切點(diǎn)
在點(diǎn)處切線方程為, 2分
,∴,
在點(diǎn)處切線的斜率,切點(diǎn),
在點(diǎn)處切線方程為, 4分
解得. 6分
(Ⅱ)由,故上有解,
,只需. 8分
①當(dāng)時(shí),,所以; 10分
②當(dāng)時(shí),∵,
,∴,,∴,
,即函數(shù)在區(qū)間上單調(diào)遞減,
所以,此時(shí). 13分
綜合①②得實(shí)數(shù)m的取值范圍是. 14分
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:解決的關(guān)鍵是對于導(dǎo)數(shù)的符號與函數(shù)單調(diào)性的關(guān)系的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù),又
(1)求的解析式;
(2)若在區(qū)間上恒有成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),且。
(1)若函數(shù)處的切線與軸垂直,求的極值。
(2)若函數(shù),求實(shí)數(shù)a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

文科設(shè)函數(shù)。(Ⅰ)若函數(shù)處與直線相切,①求實(shí)數(shù),b的值;②求函數(shù)上的最大值;(Ⅱ)當(dāng)時(shí),若不等式對所有的都成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1) 求的單調(diào)區(qū)間與極值;
(2)是否存在實(shí)數(shù),使得對任意的,當(dāng)時(shí)恒有成立.若存在,求的范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中.
(I)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(II)已知,如果存在,使得函數(shù)處取得最小值,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)其中,曲線在點(diǎn)處的切線垂直于軸.
(Ⅰ) 求的值;
(Ⅱ) 求函數(shù)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)f(x)=ln+mx2(m∈R)
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若A,B是函數(shù)f(x)圖象上不同的兩點(diǎn),且直線AB的斜率恒大于1,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案