(1)計算;

(2)證明;

(3)已知,求的值.

解析:(1)=.

(2)∵,

.

(3)由組合數(shù)公式可得.

化簡得n2-23n+42=0.

∴n=21或n=2.

∵n≤5,∴n=2.

==28.

小結(jié):計算時常用公式.證明與有關(guān)的問題時常用公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡[(a-
3
2
b2)-1(ab-3)
1
2
(b
1
2
)7]
1
3

(2)解
1
6
lgx=
1
3
lga+2lgb+lgc.
(3)用二項式定理計算(3.02)4,使誤差小于千分之一.
(4)試證直角三角形弦上的半圓的面積,等于勾上半圓的面積與股上半圓的面積的總和.
(5)已知球的半徑等于r,試求內(nèi)接正方形的體積.
(6)已知a是三角形的一邊,β及γ是這邊的兩鄰角,試求另一邊b的計算公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:成功之路·突破重點線·數(shù)學(xué)(學(xué)生用書) 題型:047

設(shè)n為自然數(shù),f(n)=1++…+

(1)試證:若m、n∈N*且m<n,則f(n)≥f(m)+,并指出取等號的條件;

(2)計算得f(2)=,f(4)>2,f(8)>,f(16)>3,f(32)>,觀察上述結(jié)果,推測一般的不等式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)化簡[(a-
3
2
b2)-1(ab-3)
1
2
(b
1
2
)7]
1
3

(2)解
1
6
lgx=
1
3
lga+2lgb+lgc.
(3)用二項式定理計算(3.02)4,使誤差小于千分之一.
(4)試證直角三角形弦上的半圓的面積,等于勾上半圓的面積與股上半圓的面積的總和.
(5)已知球的半徑等于r,試求內(nèi)接正方形的體積.
(6)已知a是三角形的一邊,β及γ是這邊的兩鄰角,試求另一邊b的計算公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)n為自然數(shù),f(n)=1+++…+.

(1)試證:若m、n∈N*且m<n,則f(n)≥f(m)+,并指出取等號的條件;

(2)計算得f(2)=,f(4)>2,f(8)>,f(16)>3,f(32)>,觀察上述結(jié)果,推測一般的不等式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:1954年全國統(tǒng)一高考數(shù)學(xué)試卷(解析版) 題型:解答題

(1)化簡
(2)解lga+2lgb+lgc.
(3)用二項式定理計算(3.02)4,使誤差小于千分之一.
(4)試證直角三角形弦上的半圓的面積,等于勾上半圓的面積與股上半圓的面積的總和.
(5)已知球的半徑等于r,試求內(nèi)接正方形的體積.
(6)已知a是三角形的一邊,β及γ是這邊的兩鄰角,試求另一邊b的計算公式.

查看答案和解析>>

同步練習(xí)冊答案