過點(-4,0)作直線l與圓x2+y2+2x-4y-20=0交于A、B兩點,如果|AB|=8,求l的方程.
考點:直線和圓的方程的應(yīng)用
專題:直線與圓
分析:將圓的方程化為標準方程,確定圓心與半徑,利用垂徑定理,結(jié)合勾股定理,即可求l的方程.
解答: 解:圓x2+y2+2x-4y-20=0化為(x+1)2+(y-2)2=25,圓心C(-1,2),半徑r=5,
∵(x-4)2+(0-2)2<25,
∴(-4,0)點在圓內(nèi).
當斜率存在時,設(shè)l斜率為k,方程為y=k(x+4),即kx-y+4k=0,
∵|AB|=8,∴圓心到直線距離為
52-42
=3,
|-k-2+4k|
k2+1
=3,
∴k=-
5
12
,
當斜率不存在時,直線x=-4也滿足.
∴l(xiāng)的方程為5x+12y+20=0或x+4=0
點評:本題考查直線與圓的位置關(guān)系,考查弦長的計算,考查分類討論的數(shù)學思想,正確求弦長是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

選修4-4:坐標系與參數(shù)方程.
極坐標系與直角坐標系xOy取相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知直線l的參數(shù)方程為
x=2+tcosα
y=tsinα
(t為參數(shù)).曲線C的極坐標方程為ρsin2θ=8cosθ.
(1)求曲線C的直角坐標方程;
(2)設(shè)直線l與曲線C交于A,B兩點,與x軸的交點為F,求
1
|AF|
+
1
|BF|
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,點A、B分別是x軸、y軸上兩個動點,又有一定點M(3,4),則|MA|+|AB|+|BM|的最小值是( 。
A、10B、11C、12D、13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
m
-y2=1
的一條漸近線和圓x2+y2-4x+3=0相切,則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一項射擊實驗的標靶為圓形.在子彈命中標靶的前提下,一次射擊能夠擊中標靶的內(nèi)接正方形的概率是( 。
A、50%
B、
3
π
C、0.2π
D、
2
π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集為R,函數(shù)f(x)=lg(1-x)的定義域為集合A,集合B={x|x(x-1)>6},
(Ⅰ)求A∪B,A∩(∁RB);
(Ⅱ)若C={x|-1+m<x<2m},且C≠∅,C⊆(A∩(∁RB)),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正方體ABCD-A1B1C1D1的 棱長為a,在正方體內(nèi)隨機取一點M,則點M落在三棱錐B1-A1BC1內(nèi)的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=x3+1在點(-1,0)處的切線方程為( 。
A、3x+y+3=0
B、3x-y+3=0
C、3x-y=0
D、3x-y-3=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

鄭州市為了緩解城市交通壓力,大力發(fā)展公共交通,提倡多坐公交少開車,為了調(diào)查市民乘公交車的候車情況,交通主管部門從在某站臺等車的45名候車乘客中隨機抽取15人,按照他們的候車時間(單位:分鐘)作為樣本分成6組,如下表所示:
組別  二 三  四  五  六 
候車時間 [0,4) [4,8) [8,12) [12,16) [16,20) [20,24)
人數(shù)  2  3  3  2  1
(Ⅰ)估計這45名乘客中候車時間少于12分鐘的人數(shù);
(Ⅱ)若從上表第四、五組的5人中隨機抽取2人做進一步的問卷調(diào)查,求抽到的2人恰好來自不同組的概率.

查看答案和解析>>

同步練習冊答案