【題目】如圖,正方形ABCD的邊長為2,O為AD的中點(diǎn),射線OP從OA出發(fā),繞著點(diǎn)O順時(shí)針方向旋轉(zhuǎn)至OD,在旋轉(zhuǎn)的過程中,記為OP所經(jīng)過的在正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積,那么對于函數(shù)有以下三個(gè)結(jié)論:
①;
②任意,都有;
③任意且,都有.
其中正確結(jié)論的序號(hào)是__________. (把所有正確結(jié)論的序號(hào)都填上).
【答案】①②
【解析】試題分析:①:如圖,當(dāng)時(shí), 與相交于點(diǎn),∵,則,
∴,∴①正確;②:由于對稱性, 恰好是正方形的面積,
∴,∴②正確;③:顯然是增函數(shù),∴,∴③錯(cuò)誤.
考點(diǎn):函數(shù)性質(zhì)的運(yùn)用.
【題型】填空題
【結(jié)束】
17
【題目】化簡
(1)
(2)
【答案】(1) ;(2) .
【解析】試題分析:(1)切化弦可得三角函數(shù)式的值為-1
(2)結(jié)合三角函數(shù)的性質(zhì)可得三角函數(shù)式的值為
試題解析:
(1)tan70°cos10°( tan20°﹣1)
=cot20°cos10°( ﹣1)
=cot20°cos10°( )
=×cos10°×()
=×cos10°×()
=×(﹣)
=﹣1
(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°
=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.
同理可得(1+tan2°)(1+tan43°)
=(1+tan3°)(1+tan42°)
=(1+tan4°)(1+tan41°)=…=2,
故=
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+alnx(a為實(shí)常數(shù))
(Ⅰ)若a=﹣2,求證:函數(shù)f(x)在(1,+∞)上是增函數(shù);
(Ⅱ)求函數(shù)f(x)在[1,e]上的最小值及相應(yīng)的x值;
(Ⅲ)若存在x∈[1,e],使得f(x)≤(a+2)x成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,有兩個(gè)獨(dú)立的轉(zhuǎn)盤()、().兩個(gè)圖中三個(gè)扇形區(qū)域的圓心角分別為、、.用這兩個(gè)轉(zhuǎn)盤進(jìn)行玩游戲,規(guī)則是:依次隨機(jī)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤再隨機(jī)停下(指針固定不會(huì)動(dòng),當(dāng)指針恰好落在分界線時(shí),則這次結(jié)果無效,重新開始),記轉(zhuǎn)盤()指針?biāo)鶎Φ臄?shù)為,轉(zhuǎn)盤()指針?biāo)鶎Φ臄?shù)為,(、),求下列概率:
(1);
(2).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某生態(tài)園將一三角形地塊ABC的一角APQ開辟為水果園種植桃樹,已知角A為120°,AB,AC的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP,AQ總長度為200米,如何圍可使得三角形地塊APQ的面積最大?
(2)已知AP段圍墻高1米,AQ段圍墻高1.5米,AP段圍墻造價(jià)為每平方米150元,AQ段圍墻造價(jià)為每平方米100元.若圍圍墻用了30000元,問如何圍可使竹籬笆用料最省?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象與軸的交點(diǎn)中相鄰兩個(gè)交點(diǎn)的距離是,當(dāng)時(shí)取得最小值.
(1)求函數(shù)的解析式;
(2)求函數(shù)在區(qū)間的最大值和最小值;
(3)若函數(shù)的零點(diǎn)為,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+x2 .
(Ⅰ)求函數(shù)h(x)=f(x)﹣3x的極值;
(Ⅱ)若函數(shù)g(x)=f(x)﹣ax在定義域內(nèi)為增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=2,an+1=2Sn+2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}的各項(xiàng)均為正數(shù),且bn是 與 的等比中項(xiàng),求bn的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,且.
(Ⅰ)證明:數(shù)列為等差數(shù)列,并求數(shù)列的通項(xiàng)公式;
(Ⅱ)若記為滿足不等式的正整數(shù)的個(gè)數(shù),設(shè),求數(shù)列的最大項(xiàng)與最小項(xiàng)的值.
【答案】(1)見解析;(2)最大項(xiàng)為,最小項(xiàng)為.
【解析】試題分析:(Ⅰ)對兩邊取倒數(shù),移項(xiàng)即可得出,故而數(shù)列為等差數(shù)列,利用等差數(shù)列的通項(xiàng)公式求出,從而可得出;(Ⅱ)根據(jù)不等式,,得,又,從而,當(dāng)為奇數(shù)時(shí),單調(diào)遞減,;當(dāng)為偶數(shù)時(shí)單調(diào)遞增,綜上的最大項(xiàng)為,最小項(xiàng)為.
試題解析:(Ⅰ)由于,,則
∴,則,即為常數(shù)
又,∴數(shù)列是以1為首項(xiàng),為公比的等比數(shù)列
從而,即.
(Ⅱ)由即,得,
又,從而
故
當(dāng)為奇數(shù)時(shí),,單調(diào)遞減,;
當(dāng)為偶數(shù)時(shí),,單調(diào)遞增,
綜上的最大項(xiàng)為,最小項(xiàng)為.
【題型】解答題
【結(jié)束】
22
【題目】已知向量, ,若函數(shù)的最小正周期為,且在區(qū)間上單調(diào)遞減.
(Ⅰ)求的解析式;
(Ⅱ)若關(guān)于的方程在有實(shí)數(shù)解,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com