【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=2,an+1=2Sn+2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}的各項(xiàng)均為正數(shù),且bn是 與 的等比中項(xiàng),求bn的前n項(xiàng)和Tn .
【答案】
(1)解:由an+1=2Sn+2,得
an=2Sn﹣1+2(n≥2),
兩式作差得:an+1﹣an=2(Sn﹣Sn﹣1)=2an,
即 .
又a2=2S1+2=2a1+2=6,
∴ .
∴數(shù)列{an}是以2為首項(xiàng),以3為公比的等比數(shù)列.
則 ;
(2)解:∵數(shù)列{bn}的各項(xiàng)均為正數(shù),且bn是 與 的等比中項(xiàng),
∴ ,
.
∴ .
.
作差得:
= = .
∴ .
【解析】(1)由an+1=2Sn+2,得an=2Sn﹣1+2(n≥2),作差后可得=3(n≥2),再檢驗(yàn),進(jìn)而可得數(shù)列{an}是等比數(shù)列,由此可得數(shù)列{an}的通項(xiàng)公式;(2)由bn是 與 的等比中項(xiàng)可得{bn}的通項(xiàng)公式,再利用錯(cuò)位相減法可得{bn}的的前n項(xiàng)和Tn.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項(xiàng)和的相關(guān)知識(shí),掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班級(jí)舉行一次知識(shí)競(jìng)賽活動(dòng),活動(dòng)分為初賽和決賽兩個(gè)階段、現(xiàn)將初賽答卷成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),制成如下頻率分布表.
分?jǐn)?shù)(分?jǐn)?shù)段) | 頻數(shù)(人數(shù)) | 頻率 |
[60,70) | ① | 0.16 |
[70,80) | 22 | ② |
[80,90) | 14 | 0.28 |
[90,100) | ③ | ④ |
合計(jì) | 50 | 1 |
(1)填充頻率分布表中的空格(在解答中直接寫出對(duì)應(yīng)空格序號(hào)的答案);
(2)決賽規(guī)則如下:參加決賽的每位同學(xué)依次口答4道小題,答對(duì)2道題就終止答題,并獲得一等獎(jiǎng).如果前三道題都答錯(cuò),就不再答第四題.某同學(xué)進(jìn)入決賽,每道題答對(duì)的概率P的值恰好與頻率分布表中不少于80分的頻率的值相同.
①求該同學(xué)恰好答滿4道題而獲得一等獎(jiǎng)的概率;
②記該同學(xué)決賽中答題個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2,O為AD的中點(diǎn),射線OP從OA出發(fā),繞著點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn)至OD,在旋轉(zhuǎn)的過(guò)程中,記為OP所經(jīng)過(guò)的在正方形ABCD內(nèi)的區(qū)域(陰影部分)的面積,那么對(duì)于函數(shù)有以下三個(gè)結(jié)論:
①;
②任意,都有;
③任意且,都有.
其中正確結(jié)論的序號(hào)是__________. (把所有正確結(jié)論的序號(hào)都填上).
【答案】①②
【解析】試題分析:①:如圖,當(dāng)時(shí), 與相交于點(diǎn),∵,則,
∴,∴①正確;②:由于對(duì)稱性, 恰好是正方形的面積,
∴,∴②正確;③:顯然是增函數(shù),∴,∴③錯(cuò)誤.
考點(diǎn):函數(shù)性質(zhì)的運(yùn)用.
【題型】填空題
【結(jié)束】
17
【題目】化簡(jiǎn)
(1)
(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: (a>b>0)左、右焦點(diǎn)分別為F1 , F2 , A(2,0)是橢圓的右頂點(diǎn),過(guò)F2且垂直于x軸的直線交橢圓于P,Q兩點(diǎn),且|PQ|=3;
(1)求橢圓的方程;
(2)若直線l與橢圓交于兩點(diǎn)M,N(M,N不同于點(diǎn)A),若 =0, = ;
①求證:直線l過(guò)定點(diǎn);并求出定點(diǎn)坐標(biāo);
②求直線AT的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)數(shù)列的通項(xiàng)公式為(, ),數(shù)列定義如下:對(duì)于正整數(shù), 是使得不等式成立的所有中的最小值.
(1)若, ,求;
(2)若, ,求數(shù)列的前項(xiàng)和公式;
(3)是否存在和,使得 ?如果存在,求和的取值范圍;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)滿足:在定義域內(nèi)存在實(shí)數(shù),使得成立,則稱函數(shù)為“的飽和函數(shù)”.給出下列四個(gè)函數(shù):①;②; ③;④.其中是“的飽和函數(shù)”的所有函數(shù)的序號(hào)是______________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex﹣ax2﹣bx﹣1,其中a,b∈R,e=2.718 28…為自然對(duì)數(shù)的底數(shù).
(1)設(shè)g(x)是函數(shù)f(x)的導(dǎo)函數(shù),求函數(shù)g(x)在區(qū)間[0,1]上的最小值;
(2)若f(1)=0,函數(shù)f(x)在區(qū)間(0,1)內(nèi)有零點(diǎn),證明:e﹣2<a<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ( )的最大值為 ,最小值為 .
(1)求 的值;
(2)將函數(shù) 圖象向右平移 個(gè)單位后,再將圖象上所有點(diǎn)的縱坐標(biāo)擴(kuò)大到原來(lái)的 倍,橫坐標(biāo)不變,得到函數(shù) 的圖象,求方程 的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a>0且a≠1,函數(shù)f(x)=x2-(a+1)x+alnx.
(1)當(dāng)a=2時(shí),求曲線y=f(x)在(3,f(3))處切線的斜率;
(2)求函數(shù)f(x)的極值點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com