方程log2|x|=-x2的實根個數(shù)有
 
個.
考點:根的存在性及根的個數(shù)判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)方程和函數(shù)之間的關(guān)系,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出函數(shù)y=log2|x|和y=-x2的圖象,由圖象可知,兩個函數(shù)的交點個數(shù)為2個,
故答案為:2
點評:本題主要考查方程根的個數(shù)的判斷,根據(jù)方和函數(shù)之間的關(guān)系,作出兩個函數(shù)圖象,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知
|AC|
=5,
|BC|
=8,∠ACB=
3
,G是△ABC的重心.求向量
CG
的模|
CG
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程x3=3x-1的3個根分別是x1、x2、x3,其中x1<x2<x3,則x2所在的區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列命題,寫出所有正確的命題的題號:
 
.:
①函數(shù)y=tanx在第一象限是增函數(shù);
②函數(shù)y=cos2
π
4
-x)是偶函數(shù);  
③函數(shù)y=4sin(2x-
π
3
)的一個對稱中心是(
π
6
,0);
④函數(shù)y=sin(x+
π
4
)在閉區(qū)間[-
π
2
,
π
2
]上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,F(xiàn)1,F(xiàn)2為橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點,過F2的直線交橢圓E于A(x1,y1),B(x2,y2)兩點,且|y1-y2|=4,若△AF1B的面積為2
3
a,則橢圓E的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=-x2-2x在[a,b]上的值域是[-3,1],則a+b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=x3+bx+c是[-1,1]上的增函數(shù),且f(-
1
2
)•f(
1
2
)<0,則方程f(x)=0在[-1,1]內(nèi)有
 
個實根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人,為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本.若樣本中的中年職工為5人,則樣本容量為(  )
A、7B、15C、25D、35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知AB=3,A、B分別在x軸和y軸上滑動,O為坐標(biāo)原點,
OP
=
2
3
OA
+
1
3
OB
,則動點P的軌跡方程是( 。
A、
x2
4
+y2=1
B、x2+
y2
4
=1
C、
x2
9
+y2=1
D、x2+
y2
9
=1

查看答案和解析>>

同步練習(xí)冊答案