如圖,四棱錐P-ABCD的底面ABCD是正方形,側棱PD⊥底面ABCD,PDDC,EPC的中點.

(1)證明:PA∥平面BDE;
(2)求二面角B-DE-C的余弦值.

(1)見解析(2)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

在直四棱柱ABCD-A1B1C1D1中,AA1=2,底面是邊長為1的正方形,E、F分別是棱B1B、DA的中點.
(1)求二面角D1-AE-C的大;
(2)求證:直線BF∥平面AD1E.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P­ABCD中,側面PAD⊥底面ABCD,側棱PA=PD=,PA⊥PD,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O為AD中點.

(1)求直線PB與平面POC所成角的余弦值;
(2)求B點到平面PCD的距離;
(3)線段PD上是否存在一點Q,使得二面角Q­AC­D的余弦值為?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,ABADABCDAB=2AD=2CD=2,EPB的中點.

(1)求證:平面EAC⊥平面PBC;
(2)若二面角P-AC-E的余弦值為,求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在四棱錐P-ABCD中,已知PB⊥底面ABCDBCAB,ADBCABAD=2,CDPD,異面直線PACD所成角等于60°.

(1)求證:面PCD⊥面PBD;
(2)求直線PC和平面PAD所成角的正弦值的大;
(3)在棱PA上是否存在一點E,使得二面角A-BE-D的余弦值為?若存在,指出點E在棱PA上的位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,ABCD是邊長為3的正方形,DE⊥平面ABCD,AFDE,DE=3AF,BE與平面ABCD所成的角為60°.

(1)求證:AC⊥平面BDE
(2)求二面角F-BE-D的余弦值;
(3)設點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知四棱錐E-ABCD的底面為菱形,且∠ABC=60°,ABEC=2,AEBE.

(1)求證:平面EAB⊥平面ABCD
(2)求直線AE與平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖在棱長為1的正方體中,M,N分別是線段和BD上的點,且AM=BN=

(1)求||的最小值;
(2)當||達到最小值時,是否都垂直,如果都垂直給出證明;如果不是都垂直,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,是正三角形,四邊形是矩形,且平面平面,

(Ⅰ) 若點的中點,求證:平面;
(II)若點為線段的中點,求二面角的正切值.

查看答案和解析>>

同步練習冊答案