如圖,在四棱錐P-ABCD中,已知PB⊥底面ABCD,BCAB,ADBCABAD=2,CDPD,異面直線PACD所成角等于60°.

(1)求證:面PCD⊥面PBD
(2)求直線PC和平面PAD所成角的正弦值的大。
(3)在棱PA上是否存在一點(diǎn)E,使得二面角A-BE-D的余弦值為?若存在,指出點(diǎn)E在棱PA上的位置,若不存在,說明理由.

(1)見解析(2)存在

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示的多面體中, 是菱形,是矩形,平面,,

(1) 求證:平面平面;
(2) 若二面角為直二面角,求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,正方形ADEF與梯形ABCD所在的平面互相垂直,,,,點(diǎn)M在線段EC上(除端點(diǎn)外)

(1)當(dāng)點(diǎn)M為EC中點(diǎn)時(shí),求證:平面;
(2)若平面與平面ABF所成二面角為銳角,且該二面角的余弦值為時(shí),求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).
 
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知四邊形ABCD是菱形,∠BAD=60°,四邊形BDEF是矩形,平面BDEF⊥平面ABCDG,H分別是CECF的中點(diǎn).

(1)求證:平面AEF∥平面BDGH
(2)若平面BDGH與平面ABCD所成的角為60°,求直線CF與平面BDGH所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是正方形,側(cè)棱PD⊥底面ABCDPDDCEPC的中點(diǎn).

(1)證明:PA∥平面BDE;
(2)求二面角B-DE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,直三棱柱ABC-A1B1C1中,△ABC是等邊三角形,DBC的中點(diǎn).

(1)求證:A1B∥平面ADC1;
(2)若ABBB1=2,求A1D與平面AC1D所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四棱錐中,為平行四邊形,且平面,,的中點(diǎn),

(Ⅰ) 求證://;
(Ⅱ)若, 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四邊形ABCD中,為正三角形,,AC與BD交于O點(diǎn).將沿邊AC折起,使D點(diǎn)至P點(diǎn),已知PO與平面ABCD所成的角為,且P點(diǎn)在平面ABCD內(nèi)的射影落在內(nèi).

(Ⅰ)求證:平面PBD;
(Ⅱ)若時(shí),求二面角的余弦值。

查看答案和解析>>

同步練習(xí)冊答案