函數(shù)
(1)當(dāng)時(shí),對(duì)任意R,存在R,使,求實(shí)數(shù)的取值范圍;
(2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

(1)的取值范圍是;(2)

解析試題分析:(1)本問(wèn)題等價(jià)于,                            1分
,                                       2分
所以上遞減,在上遞增,                      3分
所以                                     4分
,所以,所以的取值范圍是; 5分
(2),
,,  6分
所以遞增,所以,              7分
①當(dāng),即時(shí),遞增,所以,
9分
②當(dāng),即時(shí),存在正數(shù),滿足,
于是遞減,在遞增,                     10分
所以,11分
,所以遞減,    12分
,所以,                       13分
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/aa/8/1i2vz3.png" style="vertical-align:middle;" />在上遞增,所以,    14分
由①②知的取值范圍是.                       15分
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,不等式恒成立問(wèn)題。
點(diǎn)評(píng):難題,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,是導(dǎo)數(shù)應(yīng)用的基本問(wèn)題,主要依據(jù)“在給定區(qū)間,導(dǎo)函數(shù)值非負(fù),函數(shù)為增函數(shù);導(dǎo)函數(shù)值非正,函數(shù)為減函數(shù)”。確定函數(shù)的極值,遵循“求導(dǎo)數(shù),求駐點(diǎn),研究單調(diào)性,求極值”。不等式恒成立問(wèn)題,往往通過(guò)構(gòu)造函數(shù),研究函數(shù)的最值,使問(wèn)題得到解決。本題對(duì)a-2的取值情況進(jìn)行討論,易于出錯(cuò)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)的定義域?yàn)椋?,).
(Ⅰ)求函數(shù)上的最小值;
(Ⅱ)設(shè)函數(shù),如果,且,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) 
(Ⅰ)若處的切線垂直于直線,求該點(diǎn)的切線方程,并求此時(shí)函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意的恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知的導(dǎo)函數(shù),且,設(shè)

(Ⅰ)討論在區(qū)間上的單調(diào)性;
(Ⅱ)求證:;
(Ⅲ)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1) 當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2) 當(dāng)時(shí),函數(shù)圖象上的點(diǎn)都在所表示的平面區(qū)域內(nèi),求實(shí)數(shù)的取值范圍.
(3) 求證:,(其中,是自然對(duì)數(shù)的底).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如下圖,過(guò)曲線上一點(diǎn)作曲線的切線軸于點(diǎn),又過(guò)軸的垂線交曲線于點(diǎn),然后再過(guò)作曲線的切線軸于點(diǎn),又過(guò)軸的垂線交曲線于點(diǎn),以此類推,過(guò)點(diǎn)的切線 與軸相交于點(diǎn),再過(guò)點(diǎn)軸的垂線交曲線于點(diǎn)N).
(1) 求、及數(shù)列的通項(xiàng)公式;(2) 設(shè)曲線與切線及直線所圍成的圖形面積為,求的表達(dá)式; (3) 在滿足(2)的條件下, 若數(shù)列的前項(xiàng)和為,求證:N.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

規(guī)定其中,為正整數(shù),且=1,這是排列數(shù)(是正整數(shù),)的一種推廣.
(Ⅰ) 求的值;
(Ⅱ)排列數(shù)的兩個(gè)性質(zhì):①,②(其中m,n是正整數(shù)).是否都能推廣到(,是正整數(shù))的情形?若能推廣,寫(xiě)出推廣的形式并給予證明;若不能,則說(shuō)明理由;
(Ⅲ)已知函數(shù),試討論函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

函數(shù),過(guò)曲線上的點(diǎn)P的切線方程為
(1)若時(shí)有極值,求的表達(dá)式;
(2)在(1)的條件下,求在[-3,1]上的最大值;
(3)若函數(shù)在區(qū)間[-2,1]上單調(diào)遞增,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)若處的切線與直線垂直,求證:對(duì)任意,都有;
(3)若,對(duì)于任意,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案