設(shè)x,y滿足約束條件
y≤1
y≥|x-1|
,則
x+2y+3
x+1
的取值范圍是(  )
A、[2,5]
B、[1,5]
C、[
7
3
,5]
D、[
7
3
,2]
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:計(jì)算題,作圖題,不等式的解法及應(yīng)用
分析:由題意作出其平面區(qū)域,令z=
x+2y+3
x+1
=1+2
y+1
x+1
,
y+1
x+1
表示可行域內(nèi)的點(diǎn)(x,y)與點(diǎn)(-1,-1)連線的斜率,由幾何意義可得.
解答: 解:由題意作出其平面區(qū)域,

三角形的頂點(diǎn)坐標(biāo)分別為(0,1)(1,0)和(2,1),
令z=
x+2y+3
x+1
=1+2
y+1
x+1
,
y+1
x+1
表示可行域內(nèi)的點(diǎn)(x,y)與點(diǎn)(-1,-1)連線的斜率,
0+1
1+1
y+1
x+1
≤2,
1
2
y+1
x+1
≤2,
則2≤1+2
y+1
x+1
≤5,
故選A.
點(diǎn)評(píng):本題考查了簡(jiǎn)單線性規(guī)劃,作圖要細(xì)致認(rèn)真,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

使(3-2x-x2 -
1
4
有意義的x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Sn是等比數(shù)列{an}的前n項(xiàng)和,S4,S2,S3成等差數(shù)列,且a2+a3+a4=-18.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)是否存在正整數(shù)n,使得Sn≥2014?若存在,求出符合條件的所有n的集合;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商品每件成本價(jià)80元,售價(jià)100元,每天售出100件.若售價(jià)降低x成(1成=10%),售出商品數(shù)量就增加
8
50
x
成,要求售價(jià)不能低于成本價(jià).
(1)設(shè)該商店一天的營(yíng)業(yè)額為y,試求y與x之間的函數(shù)關(guān)系式y(tǒng)=f(x),并寫出定義域;
(2)若該商品一天營(yíng)業(yè)額至少10260元,求商品定價(jià)應(yīng)在哪個(gè)范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式-2xy≤ax2+2y2,若對(duì)任意x∈[1,2]及y∈[-1,3]不等式恒成立,則實(shí)數(shù)a的范圍是(  )
A、0≤a≤
1
2
B、a≥0
C、a≥
1
2
D、a≥-
15
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

f(x)=
3x+1
3x+1
的值域是( 。
A、(3,+∞)
B、(0,3)
C、(0,2)
D、(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)滿足f(x+1)-f(x)=2x-1,且f(0)=3.
(1)求f(x)的解析式;
(2)若x∈[-1,1]時(shí),f(x)≥2mx恒成立,求實(shí)數(shù)m的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且有a1=2,3Sn=5an-an-1(n≥2)
(Ⅰ)求數(shù)列an的通項(xiàng)公式;
(Ⅱ)若bn=(2n-1)an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入的x,y,N的值分別為1,2,3,則輸出的S=( 。
A、27B、81C、99D、577

查看答案和解析>>

同步練習(xí)冊(cè)答案