定義在實(shí)數(shù)集R上的函數(shù)f(x)=
1
3
x3+
1
2
(a-4)x2+2(2-a)x+a
與y軸的交點(diǎn)為A,點(diǎn)A到原點(diǎn)的距離不大于1;
(1)求a的范圍;
(2)是否存在這樣的區(qū)間,使對(duì)任意a,f(x)在該區(qū)間上為增函數(shù)?若存在,求出該區(qū)間,若不存在,說(shuō)明理由.
(1)函數(shù)圖象與y軸交點(diǎn)為(0,a),則|a|≤1,∴-1≤a≤1;------------------(3分)
(2)f'(x)=x2+(a-4)x+2(2-a)=(x-2)a+x2-4x+4,---------------(7分)
令f'(x)>0對(duì)任意的a∈[-1,1]恒成立,
即不等式g(a)=(x-2)a+x2-4x+4>0對(duì)任意的a∈[-1,1]恒成立,---(9分)
其充要條件是:
g(1)=x2-3x+2>0
g(-1)=x2-5x+6>0
,------------(11分)
解得x<1,或x>3.--------------(13分)
所以當(dāng)x∈(-∞,1)或x∈(3,+∞)時(shí),f'(x)>0對(duì)任意a∈[-1,1]恒成立,
所以對(duì)任意a∈[-1,1]函數(shù)f(x)均是單調(diào)增函數(shù).--------------(14分)
故存在區(qū)間(-∞,1)和(3,+∞),對(duì)任意a∈[-1,1],f(x)在該區(qū)間內(nèi)均是單調(diào)增函數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(1)=1,且f(x)的導(dǎo)數(shù)f'(x)在R上恒有f′(x)
1
2
(x∈R),則不等式f(x2)<
x2
2
+
1
2
的解集為( 。
A、(1,+∞)
B、(-∞,-1)
C、(-1,1)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在實(shí)數(shù)集R上的函數(shù)f(x)=ax3+bx2+cx+d,其中a,b,c,d是實(shí)數(shù).
(1)若函數(shù)f(x)在區(qū)間(-∞,-1)和(3,+∞)上都是增函數(shù),在區(qū)間(-1,3)上是減函數(shù),并且f(0)=-7,f′(0)=-18,求函數(shù)f(x)的表達(dá)式;
(2)若a,b,c滿足b2-3ac<0,求證:函數(shù)f(x)是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

23、已知定義在實(shí)數(shù)集R上的函數(shù)f(x),其導(dǎo)函數(shù)為f'(x),滿足兩個(gè)條件:①對(duì)任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)+2xy成立;②f'(0)=2.
(1)求函數(shù)的f(x)的表達(dá)式;
(2)對(duì)任意x1,x2∈[-1,1],求證:|f(x1)-f(x2)|≤4|x1-x2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(1)=2,且f(x)的導(dǎo)數(shù)f'(x)在R上恒有f'(x)<2,則不等式f(2x)<4x的解集為
{x|x>
1
2
}
{x|x>
1
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在實(shí)數(shù)集R上的函數(shù)f(x),如果存在函數(shù)g(x)=Ax+B(A,B為常數(shù))使得f(x)≥g(x)對(duì)任意的x∈R都成立,則稱(chēng)g(x)為函數(shù)f(x)的一個(gè)承托函數(shù),則下列說(shuō)法正確的是( 。
A、函數(shù)f(x)=x2-2x不存在承托函數(shù)
B、g(x)=x為函數(shù)f(x)=sinx的一個(gè)承托函數(shù)
C、g(x)=x為函數(shù)f(x)=ex-1的一個(gè)承托函數(shù)
D、函數(shù)f(x)=
2x
x2-x+1
不存在承托函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案