已知定義在實數(shù)集R上的函數(shù)f(x)滿足f(1)=2,且f(x)的導(dǎo)數(shù)f'(x)在R上恒有f'(x)<2,則不等式f(2x)<4x的解集為
{x|x>
1
2
}
{x|x>
1
2
}
分析:由f'(x)<2,可設(shè)g(x)=f(x)-2x,求導(dǎo)得g'(x)<0,知g(x)在定義域內(nèi)是減函數(shù);又g(1)=0,根據(jù)單調(diào)性知x>1時,g(x)<0,即f(x)<2x,從而得f(2x)<4x的解集.
解答:解:設(shè)g(x)=f(x)-2x,則
g'(x)=f'(x)-2<0,∴g(x)在定義域R內(nèi)是減函數(shù);
又g(1)=f(1)-2×1=2-2=0,
∴當(dāng)x<1時,g(x)=f(x)-2x>g(1)=0,即:f(x)>2x;
當(dāng)x>1時,g(x)=f(x)-2x<g(1)=0,即:f(x)<2x;
∴不等式f(2x)<4x的解集為:2x>1,即x>
1
2
;
故答案為:{x|x>
1
2
}.
點評:本題考查了用導(dǎo)數(shù)判定函數(shù)的調(diào)性的應(yīng)用,并且用構(gòu)造函數(shù)法來解答這個問題,屬于不容易想到的問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實數(shù)集R上的偶函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)減函數(shù),則不等式f(1)>f(log2x)的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

23、已知定義在實數(shù)集R上的函數(shù)f(x),其導(dǎo)函數(shù)為f'(x),滿足兩個條件:①對任意實數(shù)x,y都有f(x+y)=f(x)+f(y)+2xy成立;②f'(0)=2.
(1)求函數(shù)的f(x)的表達(dá)式;
(2)對任意x1,x2∈[-1,1],求證:|f(x1)-f(x2)|≤4|x1-x2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實數(shù)集R上的奇函數(shù)f(x),當(dāng)x>0時,f(x)的圖象是拋物線的一部分,且該拋物線經(jīng)過點(1,0)、(3,0)和(0,3).
(1)求出f(x)的解析式;
(2)寫出f(x)的單調(diào)區(qū)間;
(3)已知集合A={(x,y)|y=f(x)},B={(x,y)|y=t,x∈R,t∈R},若A∩B有4個元素,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實數(shù)集R上的函數(shù)f(x)滿足:(1)f(-x)=f(x);(2)f(4+x)=f(x);若當(dāng) x∈[0,2]時,f(x)=-x2+1,則當(dāng)x∈[-6,-4]時,f(x)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實數(shù)集R上的函數(shù)f(x),同時滿足以下三個條件:
①f(-1)=2;②x<0時,f(x)>1;③對任意實數(shù)x,y都有f(x+y)=f(x)f(y);
(1)求f(0),f(-4)的值; 
(2)判斷函數(shù)f(x)的單調(diào)性,并求出不等式f(-4x2)f(10x)≥
116
的解集.

查看答案和解析>>

同步練習(xí)冊答案