已知PA垂直于正方形ABCD所在的平面,M、N分別是AB、PC的中點,并且PA=AD.

,的坐標(biāo).

解:由PA=AD=AB,且PA⊥面AC,AD⊥AB,

所以設(shè)=i=j,=k.

以i,j,k為坐標(biāo)向量,建立空間直角坐標(biāo)系A(chǔ)—xyz.

如下圖.

因為

=

=+

=-j+k+(-k-i+j)=-i+k,

所以=(-,0,),=(0,1,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2004•朝陽區(qū)一模)如圖,已知PA垂直于正方形ABCD所在的平面,E、F分別為AB、PD的中點,過AE、AF的平面交PC于點H,二面角P-CD-B為45°,PA=a.
(Ⅰ)求證:AF∥EH;
(Ⅱ)求證:平面PCE⊥平面PCD; 
(Ⅲ)求多面體ECDAHF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知PA垂直于正方形ABCD所在的平面,M、N分別是AB、PC的中點,并且PA=AD.

、的坐標(biāo).?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:西藏拉薩中學(xué)高二年級(2010-2011學(xué)年)第五次月考數(shù)學(xué)試卷 題型:填空題

已知PA垂直于正方形ABCD所在的平面,若PA和正方形的邊長都等于3則PC和平面ABCD所成的角是             。(用反正切函數(shù)表示)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:朝陽區(qū)一模 題型:解答題

如圖,已知PA垂直于正方形ABCD所在的平面,E、F分別為AB、PD的中點,過AE、AF的平面交PC于點H,二面角P-CD-B為45°,PA=a.
(Ⅰ)求證:AFEH;
(Ⅱ)求證:平面PCE⊥平面PCD; 
(Ⅲ)求多面體ECDAHF的體積.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知PA垂直于正方形ABCD所在的平面,M、N分別是AB、PC的中點,并且PA=AD.

、的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案