【題目】已知橢圓的方程為,斜率為的直線與橢圓交于兩點,點在直線的左上方.

1)若以為直徑的圓恰好經(jīng)過橢圓右焦點,求此時直線的方程;

2)求證:的內(nèi)切圓的圓心在定直線上.

【答案】1.(2)見解析

【解析】

1)設直線的方程為.設,.由直線方程與橢圓方程聯(lián)立消元后應用韋達定理得,由判別式大于0得的一個范圍,由點在直線的左上方再一個的范圍,兩者結(jié)合得的取值范圍,以為直徑的圓恰好經(jīng)過橢圓的右焦點,說明,用坐標表示并代入可求得,注意的取值范圍,即得直線方程;

2)由(1)計算,即得直線的內(nèi)角平分線,可得結(jié)論.

解:(1)設直線的方程為.設

,則,

,解得

又∵點在直線的左上方,∴

若以為直徑的圓恰好經(jīng)過橢圓的右焦點,

,即,

化簡得,解得,或(舍).

∴直線的方程為

2)∵

,

∴直線平分,即的內(nèi)切圓的圓心在定直線上.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】大自然是非常奇妙的,比如蜜蜂建造的蜂房.蜂房的結(jié)構(gòu)如圖所示,開口為正六邊形ABCDEF,側(cè)棱AA'、BB'、CC'DD'、EE'、FF'相互平行且與平面ABCDEF垂直,蜂房底部由三個全等的菱形構(gòu)成.瑞士數(shù)學家克尼格利用微積分的方法證明了蜂房的這種結(jié)構(gòu)是在相同容積下所用材料最省的,因此,有人說蜜蜂比人類更明白如何用數(shù)學方法設計自己的家園.英國數(shù)學家麥克勞林通過計算得到∠BCD′=109°2816'.已知一個房中BB'5,AB2,tan54°4408',則此蜂房的表面積是_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】4個相同的小球全部放入2個不同的盒子里,每個盒子至少放1個球,不同的放法數(shù)記為;把4個不同的小球全部放入2個不同的盒子里,每個盒子至少放1個球,不同的放法數(shù)記為.現(xiàn)在從的所有整數(shù)中(包括兩個整數(shù))抽取3個數(shù),則這3個數(shù)之和共有( )種結(jié)果.

A.26B.27C.28D.29

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在抗擊新冠肺炎疫情期間,很多人積極參與了疫情防控的志愿者活動.各社區(qū)志愿者服務類型有:現(xiàn)場值班值守,社區(qū)消毒,遠程教育宣傳,心理咨詢(每個志愿者僅參與一類服務).參與A,BC三個社區(qū)的志愿者服務情況如下表:

社區(qū)

社區(qū)服務總?cè)藬?shù)

服務類型

現(xiàn)場值班值守

社區(qū)消毒

遠程教育宣傳

心理咨詢

A

100

30

30

20

20

B

120

40

35

20

25

C

150

50

40

30

30

1)從上表三個社區(qū)的志愿者中任取1人,求此人來自于A社區(qū),并且參與社區(qū)消毒工作的概率;

2)從上表三個社區(qū)的志愿者中各任取1人調(diào)查情況,以X表示負責現(xiàn)場值班值守的人數(shù),求X的分布列;

3)已知A社區(qū)心理咨詢滿意率為0.85B社區(qū)心理咨詢滿意率為0.95,C社區(qū)心理咨詢滿意率為0.9,,分別表示A,B,C社區(qū)的人們對心理咨詢滿意,,分別表示A,BC社區(qū)的人們對心理咨詢不滿意,寫出方差,的大小關系.(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】11月,2019全國美麗鄉(xiāng)村籃球大賽在中國農(nóng)村改革的發(fā)源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.

1)經(jīng)過1輪投球,記甲的得分為,求的分布列;

2)若經(jīng)過輪投球,用表示經(jīng)過第輪投球,累計得分,甲的得分高于乙的得分的概率.

①求;

②規(guī)定,經(jīng)過計算機計算可估計得,請根據(jù)①中的值分別寫出ac關于b的表達式,并由此求出數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某市房管局為了了解該市市民20181月至20191月期間購買二手房情況,首先隨機抽樣其中200名購房者,并對其購房面積(單位:萬元/平方米,進行了一次調(diào)查統(tǒng)計,制成了如圖1所示的頻率分布直方圖,接著調(diào)查了該市20181月至20191月期間當月在售二手房均價(單位:萬元平方米),制成了如圖2所示的散點圖(圖中月份代碼1-13分別對應20181月至20191月).

1)試估計該市市民的平均購房面積.

2)現(xiàn)采用分層抽樣的方法從購房面積位于40位市民中隨機取4人,再從這4人中隨機抽取2人,求這2人的購房面積恰好有一人在的概率.

3)根據(jù)散點圖選兩個模型進行擬合,經(jīng)過數(shù)據(jù)處理得到兩個回歸方程,分別為,并得到一些統(tǒng)計量的值,如下表所示:

0.000591

0.000164

0.00050

請利用相關指數(shù)判斷哪個模型的擬合效果更好,并用擬合效果更好的模型預測20196月份的二手房購房均價(精確到0.001./span>

參考數(shù)據(jù):,,,,,

參考公式:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線C,過拋物線焦點F的直線交拋物線CAB兩點,P是拋物線外一點,連接,分別交拋物線于點C,D,且,設,的中點分別為M,N.

1)求證:軸;

2)若,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面,,,,,點為棱的中點

1)證明:;

2)若為棱上一點,滿足,求銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知多面體中,四邊形為菱形,為正四面體,且.

1)求證:平面

2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案