【題目】已知函數(shù)f(x)=log2(3+x)﹣log2(3﹣x),
(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;
(2)已知f(sinα)=1,求α的值.
【答案】
(1)解:要使函數(shù)f(x)=log2(3+x)﹣log2(3﹣x)有意義,則 ﹣3<x<3,
∴函數(shù)f(x)的定義域為(﹣3,3);
∵f(﹣x)=log2(3﹣x)﹣log2(3+x)=﹣f(x),∴函數(shù)f(x)為奇函數(shù).
(2)解:令f(x)=1,即 ,解得x=1.
∴sinα=1,
∴α=2k ,(k∈Z).
【解析】(1)要使函數(shù)f(x)=log2(3+x)﹣log2(3﹣x)有意義,則 ﹣3<x<3即可,
由f(﹣x)=log2(3﹣x)﹣log2(3+x)=﹣f(x),可判斷函數(shù)f(x)為奇函數(shù).
(2)令f(x)=1,即 ,解得x=1.即sinα=1,可求得α.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,已知點A(0,3)和B(6,0).
(Ⅰ)求線段AB垂直平分線的方程;
(Ⅱ)若曲線C上的任意一點P滿足2|PA|=|PB|,求曲線C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),且f(x+2)=f(x﹣2);當0≤x≤1時,f(x)= ,則f(1)+f(2)+f(3)+…+f等于( )
A.﹣1
B.0
C.1
D.2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司有A、B、C、D、E五輛汽車,其中A、B兩輛汽車的車牌尾號均為1,C、D兩輛汽車的車牌尾號均為2,E車的車牌尾號為6.已知在非限行日,每輛車可能出車或不出車,A、B、E三輛汽車每天出車的概率均為 ,C、D兩輛汽車每天出車的概率均為 ,五輛汽車是否出車相互獨立,該公司所在地區(qū)汽車限行規(guī)定如下:
工作日 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 |
限行車牌尾號 | 0和5 | 1和6 | 2和7 | 3和8 | 4和9 |
例如,星期一禁止車牌尾號為0和5的車輛通行.
(1)求該公司在星期一至少有2輛汽車出車的概率;
(2)設X表示該公司在星期二和星期三兩天出車的車輛數(shù)之和,求X的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的右焦點與拋物線y2=4x的焦點F重合,且橢圓的離心率是 ,如圖所示.
(1)求橢圓的標準方程;
(2)拋物線的準線與橢圓在第二象限相交于點A,過點A作拋物線的切線l,l與橢圓的另一個交點為B,求線段AB的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)y=f″(x)是y=f′(x)的導數(shù).某同學經(jīng)過探究發(fā)現(xiàn),任意一個三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)都有對稱中心(x0 , f(x0)),其中x0滿足f″(x0)=0.已知函數(shù)f(x)= x3﹣ x2+3x﹣ ,則f( )+f( )+f( )+…+f( )= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2AD,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE(A1平面ABCD),若M、O分別為線段A1C、DE的中點,則在△ADE翻轉(zhuǎn)過程中,下列說法錯誤的是( )
A.與平面A1DE垂直的直線必與直線BM垂直
B.異面直線BM與A1E所成角是定值
C.一定存在某個位置,使DE⊥MO
D.三棱錐A1﹣ADE外接球半徑與棱AD的長之比為定值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com