【題目】在直角坐標(biāo)系xOy中,已知點(diǎn)A(0,3)和B(6,0).

(Ⅰ)求線段AB垂直平分線的方程;

(Ⅱ)若曲線C上的任意一點(diǎn)P滿足2|PA|=|PB|,求曲線C的方程.

【答案】(I);(II).

【解析】

(Ⅰ)由AB的坐標(biāo)求得AB的中點(diǎn)坐標(biāo),再求出AB所在直線當(dāng)斜率,可得AB的垂直平分線的斜率,代入直線方程的點(diǎn)斜式得答案;

(Ⅱ)設(shè)Px,y),運(yùn)用兩點(diǎn)的距離公式,平方化簡(jiǎn)可得曲線C的方程.

(Ⅰ)∵A(0,3),B(6,0),

AB的中點(diǎn)坐標(biāo)為(3,),

∴線段AB垂直平分線的方程為y

即4x﹣2y﹣9=0;

(Ⅱ)設(shè)Px,y),由2|PA|=|PB|,

可得,

平方可得4x2+4y2﹣24y+36=x2﹣12x+36+y2,

化簡(jiǎn)可得x2+y2+4x﹣8y=0,

則曲線C的方程為圓

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】長(zhǎng)郡中學(xué)早上8點(diǎn)開始上課,若學(xué)生小典與小方勻在早上7:40至8:00之間到校,且兩人在該時(shí)間段的任何時(shí)刻到校都是等可能的,則小典比小方至少早5分鐘到校的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,側(cè)棱PA⊥平面ABCD,E為AD的中點(diǎn),BE∥CD,BE⊥AD,PA=AE=BE=2,CD=1;
(1)求二面角C﹣PB﹣E的余弦值;
(2)在線段PE上是否存在點(diǎn)M,使得DM∥平面PBC?若存在,求出點(diǎn)M的位置,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)判斷: ①某校高三一班和高三二班的人數(shù)分別是m,n,某次測(cè)試數(shù)學(xué)平均分分別是a,b,則這兩個(gè)班的數(shù)學(xué)平均分為 ;
②10名工人某天生產(chǎn)同一零件的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有c>a>b;
③從總體中抽取的樣本為 ,則回歸直線 必過(guò)點(diǎn)(
④已知ξ服從正態(tài)分布N(0,σ2),且P(﹣2≤ξ≤0)=4,則P(ξ>2)=0.2
其中正確的個(gè)數(shù)有(
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】高三第一學(xué)期期末四校聯(lián)考數(shù)學(xué)第I卷中共有8道選擇題,每道選擇題有4個(gè)選項(xiàng),其中只有一個(gè)是正確的;評(píng)分標(biāo)準(zhǔn)規(guī)定:“每題只選一項(xiàng),答對(duì)得5分,不答或答錯(cuò)得0分.”某考生每道題都給出一個(gè)答案,已確定有5道題的答案是正確的,而其余選擇題中,有1道題可判斷出兩個(gè)選項(xiàng)是錯(cuò)誤的,有一道可以判斷出一個(gè)選項(xiàng)是錯(cuò)誤的,還有一道因不了解題意只能亂猜,試求出該考生:
(1)得40分的概率;
(2)得多少分的可能性最大?
(3)所得分?jǐn)?shù)ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在(0,+∞)上的函數(shù) ,其中a>0.設(shè)兩曲線y=f(x)與y=g(x)有公共點(diǎn),且在公共點(diǎn)處的切線相同.則b的最大值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=kex﹣x2(其中k∈R,e是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若k<0,試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(Ⅱ)若k=2,當(dāng)x∈(0,+∞)時(shí),試比較f(x)與2的大;
(Ⅲ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2),求k的取值范圍,并證明0<f(x1)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log2(3+x)﹣log2(3﹣x),
(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;
(2)已知f(sinα)=1,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某校高二年級(jí)學(xué)生參加社區(qū)服務(wù)次數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計(jì)表和頻率分布直方圖如下:


(1)求出表中M,P及圖中 的值;
(2)若該校高二學(xué)生有240人,試估計(jì)該校高二學(xué)生參加社區(qū)服務(wù)的次數(shù)在區(qū)間[10,15]內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至多一人參加社區(qū)服務(wù)次數(shù)在區(qū)間[25,30]內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案