用數(shù)學歸納法證明時,設(shè)f(k)=1×4+2×7+…+k(3k+1)=k(k+1)2,則f(k+1)-f(k)
 
考點:數(shù)學歸納法
專題:證明題,點列、遞歸數(shù)列與數(shù)學歸納法
分析:數(shù)學歸納法證明n=k+1的待證表達式,可以利用n=k時的表達式寫出即可.
解答: 解:因為f(k)=1×4+2×7+…+k(3k+1),
所以f(k+1)-f(k)=[1×4+2×7+…+k(3k+1)+(k+1)(3k+4)]-[1×4+2×7+…+k(3k+1)=
=(k+1)(3k+4).
故答案為:(k+1)(3k+4).
點評:本題考查數(shù)學歸納法的應(yīng)用,基本知識的考查.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(1)設(shè)f(x)=
x2(x≤0)
cosx-1(x>0)
試求
π
2
-1
f(x)dx.
(2)求函數(shù)y=
1
3
x與y=x-x2圍成封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出以下命題:①函數(shù)f(x)=|log2x2|既無最大值也無最小值;
②函數(shù)f(x)=|x2-2x-3|的圖象關(guān)于直線x=1對稱;
③若函數(shù)f(x)的定義域為(0,1),則函數(shù)f(x2)的定義域為(-1,1);
④若函數(shù)f(x)滿足|f(-x)|=|f(x)|,則函數(shù)f(x)或是奇函數(shù)或是偶函數(shù);
⑤設(shè)定義在R上的函數(shù)f(x)滿足對任意x1,x2∈R,x1<x2,有f(x1)-f(x2)<x1-x2恒成立,則函數(shù)F(x)=f(x)-x在R上遞增.其中正確的命題是
 
.(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三棱錐P-ABC中,△ABC是邊長為6的正三角形,PA⊥平面ABC,且三棱錐外接球的表面積為64π,則PA=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè){an}是公差不為0的等差數(shù)列,a1=2且a1,a3,a6成等比數(shù)列,則{an}的前5項和S5=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
AB
|=2,|
BC
|=1,∠ABC=60°,P是線段AB上一點(包括端點),則
CP
AB
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為F2(3,0),離心率為e.
(Ⅰ)若e=
3
2
,求橢圓的方程;
(Ⅱ)設(shè)直線y=kx(k>0)與橢圓相交于A,B兩點,若
AF2
BF2
=0,求k2+
81
a4-18a2
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線C1的參數(shù)方程是
x=3cosθ
y=3sinθ
(θ為參數(shù)),曲線C2的極坐標方程是ρ2+6cosθ-2ρsinθ+6=0,則曲線C1與C2的公切線條數(shù)為
 
條.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a,b是方程2(lgx)2-lgx4+1=0的兩個根,則lg(ab)•(logab+logba)=
 

查看答案和解析>>

同步練習冊答案