【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn).若點(diǎn)的極坐標(biāo)為,直線經(jīng)過點(diǎn)且與曲線相交于兩點(diǎn),設(shè)線段的中點(diǎn)為,求的值.
【答案】(1); 線的直角坐標(biāo)方程為;(2).
【解析】試題分析:(1)直線的參數(shù)方程中的參數(shù)為,所以消得到直線的普通方程;根據(jù),,極坐標(biāo)方程兩邊同時(shí)乘以,化簡為曲線的普通方程;(2)根據(jù)直線過點(diǎn),可知直線的傾斜角,代入直線的參數(shù)方程,得到,代入曲線的極坐標(biāo)方程,轉(zhuǎn)化為關(guān)于的一元二次方程,根據(jù)的幾何意義可知.
試題解析:(1)∵直線的參數(shù)方程為(為參數(shù)),
∴直線的普通方程為....................2分
由,得,即,
∴曲線的直角坐標(biāo)方程為.............................4分
(2)∵點(diǎn)的極坐標(biāo)為,∴點(diǎn)的直角坐標(biāo)為...............5分
∴,直線的傾斜角.
∴直線的參數(shù)方程為(為參數(shù))...................7分
代入,得.....................8分
設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)為.
∵為線段的中點(diǎn),
∴點(diǎn)對(duì)應(yīng)的參數(shù)值為.
又點(diǎn),則.........................10分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.
(1)若m=﹣1求A∩B;
(2)若A∩B=,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,以橢圓長、短軸四個(gè)端點(diǎn)為頂點(diǎn)為四邊形的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖所示,記橢圓的左、右頂點(diǎn)分別為、,當(dāng)動(dòng)點(diǎn)在定直線上運(yùn)動(dòng)時(shí),直線分別交橢圓于兩點(diǎn)、,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某服裝廠生產(chǎn)一種服裝,每件服裝的成本為40元,出廠單價(jià)定為60元.該廠為鼓勵(lì)銷售商訂購,決定當(dāng)一次訂購量超過100件時(shí),每多訂購一件,訂購的全部服裝的出廠單價(jià)就降低0.02元.根據(jù)市場調(diào)查,銷售商一次訂購量不會(huì)超過500件.
(1)設(shè)一次訂購量為x件,服裝的實(shí)際出廠單價(jià)為P元,寫出函數(shù)P=f(x)的表達(dá)式;
(2)當(dāng)銷售商一次訂購多少件時(shí),該服裝廠獲得的利潤最大,最大利潤是多少元? (服裝廠售出一件服裝的利潤=實(shí)際出廠單價(jià)﹣成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的極小值為0.
(1)求實(shí)數(shù)的值;
(2)若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用數(shù)學(xué)歸納法證明1+2+3+…+n2= ,則當(dāng)n=k+1時(shí)左端應(yīng)在n=k的基礎(chǔ)上加上( )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+(k2+3)+…+(k+1)2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某體育場要建造一個(gè)長方形游泳池,其容積為4800m3 , 深為3m,如果建造池壁的單價(jià)為a且建造池底的單價(jià)是建造池壁的1.5倍,怎樣設(shè)計(jì)水池的長和寬,才能使總造價(jià)最底?最低造價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為.不過原點(diǎn)的直線與相交于兩點(diǎn),且線段被直線平分.
(1)求橢圓的方程;
(2)求的面積取最大值時(shí)直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com