【題目】某體育場要建造一個長方形游泳池,其容積為4800m3 , 深為3m,如果建造池壁的單價為a且建造池底的單價是建造池壁的1.5倍,怎樣設計水池的長和寬,才能使總造價最底?最低造價是多少?

【答案】解:由容積為4800m3 , 深為3m,
設水池底面的長為x米,寬為 米,總造價為y,
則y= 1.5a+23(x+ )a=2400a+6(x+ )a≥2400a+6a2 =2880a.
當且僅當x= ,即x=40,取得最小值2880a.
則當池底長為40米,寬為40米時,總造價最低為2880a元.
【解析】由題意設水池底面的長為x米,寬為 米,總造價為y,可得y= 1.5a+23(x+ )a=2400a+6(x+ )a,運用基本不等式,可得最小值,求得等號成立的條件.
【考點精析】本題主要考查了基本不等式在最值問題中的應用的相關知識點,需要掌握用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下面有命題: ①y=|sinx﹣ |的周期是π;
②y=sinx+sin|x|的值域是[0,2];
③方程cosx=lgx有三解;
④ω為正實數(shù),y=2sinωx在 上遞增,那么ω的取值范圍是
⑤在y=3sin(2x+ )中,若f(x1)=f(x2)=0,則x1﹣x2必為π的整數(shù)倍;
⑥若A、B是銳角△ABC的兩個內角,則點P(cosB﹣sinA,sinB﹣cosA在第二象限;
⑦在△ABC中,若 ,則△ABC鈍角三角形.其中真命題個數(shù)為(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,傾斜角為的直線的參數(shù)方程為為參數(shù)).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.

1)寫出直線的普通方程和曲線的直角坐標方程;

2)已知點.若點的極坐標為,直線經過點且與曲線相交于兩點,設線段的中點為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=x3+x2+mx+1在(﹣∞,+∞)上是單調函數(shù),則實數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等比數(shù)列的前項和為,且,

1)求數(shù)列的通項公式;

2)數(shù)列中, ,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù),f(1)=﹣
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若三棱錐的三條側棱兩兩垂直,側棱長分別為1, ,2,且它的四個頂點在同一球面上,則此球的體積為(
A.
B.
C.
D.8π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=

l)求函數(shù)fx)的定義域;

2)求函數(shù)fx)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a≥0,f(x)=x﹣1﹣ln2x+2alnx(x>0).
(1)令F(x)=xf′(x),討論F(x)在(0,+∞)內的單調性并求極值;
(2)求證:當x>1時,恒有x>ln2x﹣2alnx+1.

查看答案和解析>>

同步練習冊答案