【題目】已知兩點分別在軸和軸上運(yùn)動,且,若動點滿足.

1)求出動點的軌跡的標(biāo)準(zhǔn)方程;

2)設(shè)動直線與曲線有且僅有一個公共點,與圓相交于兩點(兩點均不在坐標(biāo)軸上),求直線的斜率之積.

【答案】1; 2.

【解析】

1)計算得到,根據(jù),計算得到答案.

2)討論直線的斜率存在和直線的斜率不存在兩種情況,計算得到答案.

1)因為,即

所以,所以

又因為,所以,即,即.

所以曲線的標(biāo)準(zhǔn)方程為.

2)當(dāng)直線的斜率存在時,設(shè)的方程為.

由方程組.

∵直線與橢圓有且僅有一個公共點,

,即.

由方程組,

.

設(shè),則,

設(shè)直線的斜率分別為,

所以

代入上式,得.

當(dāng)直線的斜率不存在時,由題意知的方程為.

此時,圓的交點也滿足.

綜上,直線的斜率之積為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PPD//平面MAC,PA=PD=,AB=4.

(I)求證:MPB的中點;

(II)求二面角B-PD-A的大。

(III)求直線MC與平面BDP所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】到2020年,我國將全面建立起新的高考制度,新高考采用模式,其中語文、數(shù)學(xué)、英語三科為必考科目,滿分各150分,另外考生還要依據(jù)想考取的高校及專業(yè)的要求,結(jié)合自己的興趣、愛好等因素,在思想政治、歷史、地理、物理、化學(xué)、生物6門科目中自選3門(6選3)參加考試,滿分各100分.為了順利迎接新高考改革,某學(xué)校采用分層抽樣的方法從高一年級1000名(其中男生550名,女生450名)學(xué)生中抽取了名學(xué)生進(jìn)行調(diào)查.

(1)已知抽取的名學(xué)生中有女生45名,求的值及抽取的男生的人數(shù).

(2)該校計劃在高一上學(xué)期開設(shè)選修中的“物理”和“地理”兩個科目,為了解學(xué)生對這兩個科目的選課情況,對在(1)的條件下抽取到的名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個科目中必須選擇一個科目,且只能選擇一個科目),得到如下列聯(lián)表.

選擇“物理”

選擇“地理”

總計

男生

10

女生

25

總計

(i)請將列聯(lián)表補(bǔ)充完整,并判斷是否有以上的把握認(rèn)為選擇科目與性別有關(guān)系.

(ii)在抽取的選擇“地理”的學(xué)生中按性別分層抽樣抽取6名,再從這6名學(xué)生中抽取2名,求這2名中至少有1名男生的概率.

附:,其中.

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在處的切線為.為自然對數(shù)的底數(shù)).

1)求,的值;

2)當(dāng)時,求證:;

3)若對任意的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《張丘建算經(jīng)》是中國古代的著名數(shù)學(xué)著作,該書表明:至遲于公元5世紀(jì),中國已經(jīng)系統(tǒng)掌握等差數(shù)列的相關(guān)理論,該書上卷22題又女工善織問題今有女善織,日益功疾,初日織五尺,今一月曰織九匹三丈,問日益幾何?,大概意思是:有一個女工人善于織布,每天織布的尺數(shù)越來越多且成等差數(shù)列,第一天知5尺,30天共織九匹三丈,問每天增加的織布數(shù)目是多少寸?答案是__________.(注:當(dāng)時一匹為四丈,一丈為十尺,一尺為十寸,結(jié)果四舍五入精確到寸)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,原點為,拋物線的方程為,線段是拋物線的一條動弦.

1)求拋物線的準(zhǔn)線方程和焦點坐標(biāo)

2)當(dāng)時,設(shè)圓,若存在兩條動弦,滿足直線與圓相切,求半徑的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy,曲線C的參數(shù)方程為(m為參數(shù)),O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcosθρsinθ2=0.

(1)Cl的直角坐標(biāo)方程;

(2)設(shè)直線l與曲線C的公共點為P,Q,|PQ|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱柱的所有棱長都為2,且.

1)證明:平面平面;

2)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場一年中各月份的收入、支出情況的統(tǒng)計如圖所示,下列說法中正確的是______.

①2至3月份的收入的變化率與11至12月份的收入的變化率相同;

②支出最高值與支出最低值的比是6:1;

③第三季度平均收入為50萬元;

④利潤最高的月份是2月份。

查看答案和解析>>

同步練習(xí)冊答案