【題目】已知函數(shù),.
(1)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若存在實(shí)數(shù)使得關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
【答案】(1);(2).
【解析】
試題(1)把函數(shù)化簡(jiǎn)為,這個(gè)分段函數(shù)是由兩個(gè)二次函數(shù)構(gòu)成,右邊是開口向上的拋物線的一部分,對(duì)稱軸是,左邊是開口向下的拋物線的一部分,對(duì)稱軸是,為了使函數(shù)為增函數(shù),因此有;(2)方程有三個(gè)不相等的實(shí)數(shù)根,就是函數(shù)的圖象與直線有三個(gè)不同的交點(diǎn),為此研究函數(shù)的單調(diào)性,由(1)知當(dāng)時(shí),在上單調(diào)遞增,不合題意,當(dāng)時(shí),,在上單調(diào)增,在上單調(diào)減,在上單調(diào)增,關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)根的條件是, 由此有,因?yàn)?/span>,則有,由于題中是存在,故只要大于1且小于的最大值;當(dāng)時(shí)同理討論即可.
試題解析:(1),
當(dāng)時(shí),的對(duì)稱軸為:;
當(dāng)時(shí),的對(duì)稱軸為:;
∴當(dāng)時(shí),在R上是增函數(shù),
即時(shí),函數(shù)在上是增函數(shù);
(2)方程的解即為方程的解.
①當(dāng)時(shí),函數(shù)在上是增函數(shù),
∴關(guān)于的方程不可能有三個(gè)不相等的實(shí)數(shù)根;
②當(dāng)時(shí),即,
∴在上單調(diào)增,在上單調(diào)減,在上單調(diào)增,
∴當(dāng)時(shí),關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)根;即,
∵∴.
設(shè),
∵存在使得關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)根,
∴,
又可證在上單調(diào)增
∴∴;
③當(dāng)時(shí),即,∴在上單調(diào)增,在上單調(diào)減,在上單調(diào)增,
∴當(dāng)時(shí),關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)根;
即,∵∴,設(shè)
∵存在使得關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)根,
∴,又可證在上單調(diào)減∴
∴;
綜上:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)镽.當(dāng)x<0時(shí),f(x)=x3﹣1;當(dāng)﹣1≤x≤1時(shí),f(﹣x)=﹣f(x);當(dāng)x> 時(shí),f(x+ )=f(x﹣ ).則f(6)=( 。
A.﹣2
B.﹣1
C.0
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若函數(shù)的圖象關(guān)于直線x=-對(duì)稱,且.
(1)求實(shí)數(shù)a,b的值;
(2)求函數(shù)在區(qū)間[-3,2]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(2-a)x-2(1+ln x)+a,若函數(shù)f(x)在區(qū)間上無零點(diǎn),求實(shí)數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的右焦點(diǎn)為,且點(diǎn)在橢圓上,為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且,求直線的斜率的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.
根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價(jià)收費(fèi),超出x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中a的值;
(2)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(3)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)x(噸),估計(jì)x的值,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)()在區(qū)間(0,)上至多取到兩次最大值,且在區(qū)間(,)上不單調(diào),則滿足條件的的個(gè)數(shù)是( 。
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象與軸的交點(diǎn)為,它在軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為和.
(1)求解析式及的值;
(2)求的單調(diào)增區(qū)間;
(3)若時(shí),函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com