【題目】已知函數(shù)f(x)的定義域?yàn)镽.當(dāng)x<0時(shí),f(x)=x3﹣1;當(dāng)﹣1≤x≤1時(shí),f(﹣x)=﹣f(x);當(dāng)x> 時(shí),f(x+ )=f(x﹣ ).則f(6)=( 。
A.﹣2
B.﹣1
C.0
D.2
【答案】D
【解析】解:∵當(dāng)x> 時(shí),f(x+ )=f(x﹣ ), ∴當(dāng)x> 時(shí),f(x+1)=f(x),即周期為1.
∴f(6)=f(1),
∵當(dāng)﹣1≤x≤1時(shí),f(﹣x)=﹣f(x),
∴f(1)=﹣f(﹣1),
∵當(dāng)x<0時(shí),f(x)=x3﹣1,
∴f(﹣1)=﹣2,
∴f(1)=﹣f(﹣1)=2,
∴f(6)=2.
故選:D.
求得函數(shù)的周期為1,再利用當(dāng)﹣1≤x≤1時(shí),f(﹣x)=﹣f(x),得到f(1)=﹣f(﹣1),當(dāng)x<0時(shí),f(x)=x3﹣1,得到f(﹣1)=﹣2,即可得出結(jié)論.;本題考查函數(shù)值的計(jì)算,考查函數(shù)的周期性,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成下面的22列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | 10 | 55 | |
合計(jì) |
(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X.若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列,期望E(X)和方差D(X).
附:.
P(K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的序號是__________________.(寫出所有正確的序號)
①正切函數(shù)在定義域內(nèi)是增函數(shù);
②已知函數(shù)的最小正周期為,將的圖象向右平移個(gè)單位長度,所得圖象關(guān)于軸對稱,則的一個(gè)值可以是;
③若,則三點(diǎn)共線;④函數(shù)的最小值為;
⑤函數(shù)在上是增函數(shù),則的取值范圍是.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a1=2,a2為整數(shù),且a3∈[3,5].
(1)求{an}的通項(xiàng)公式;
(2)設(shè),求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=log4(22x+1)+mx的圖象經(jīng)過點(diǎn) .
(Ⅰ)求m值并判斷的奇偶性;
(Ⅱ)設(shè)g(x)=log4(2x+x+a)f(x),若關(guān)于x的方程f(x)=g(x)在x∈[-2,2]上有且只有一個(gè)解,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,直線的極坐標(biāo)方程為,現(xiàn)以極點(diǎn)為原點(diǎn),極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標(biāo)方程和曲線的普通方程;
(2)若曲線為曲線關(guān)于直線的對稱曲線,點(diǎn)分別為曲線、曲線上的動點(diǎn),點(diǎn)坐標(biāo)為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為定義在 上的奇函數(shù),當(dāng)時(shí),函數(shù)解析式為.
(Ⅰ)求的值,并求出在上的解析式;
(Ⅱ)求在上的最值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a,b∈R,c∈[0,2π),若對于任意實(shí)數(shù)x都有2sin(3x﹣ )=asin(bx+c),則滿足條件的有序?qū)崝?shù)組(a,b,c)的組數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)在上是增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若存在實(shí)數(shù)使得關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com