【題目】如圖,四棱錐P—ABCD中,底面ABCD是直角梯形,∠DAB=90°,AD//BC,且BC⊥PB,△PAB是等邊三角形,DA=AB=2,BC=AD,E是線段AB的中點(diǎn).

(I)求證:PE⊥CD;

(II)求PC與平面PDE所成角的正弦值.

【答案】(1)見解析(2)PC與平面PDE所成角的正弦值為

【解析】試題分析】(1)先證明線面垂直,再運(yùn)用線面垂直的性質(zhì)定理分析推證;(2)建立空間向量,運(yùn)用向量的坐標(biāo)形式及向量的數(shù)量積公式分析求解:

解:(I)證明:因?yàn)锽C⊥AB,BC⊥PB,

所以BC⊥側(cè)面PAB,

PE平面PAB,所以BC⊥PE.

又因?yàn)椤鱌AB是等邊三角形,E是線段AB的中點(diǎn),

所以PE⊥AB.

因?yàn)锳D∩AB=A,

所以PE⊥平面ABCD.

而CD平面ABCD,所以PE⊥CD.

(II)以E為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系E—xyz.

則E(0,0,0),C(1,-1,0),D(2,1,0),P(0,0,

,,

設(shè)=(x,y,z)為平面PDE的法向量.

令x=1可得

設(shè)PC與平面PDE所成的角為

所以PC與平面PDE所成角的正弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓),四點(diǎn), , 中恰有三點(diǎn)在橢圓上.

1的方程;

2設(shè)直線不經(jīng)過點(diǎn)且與相交于兩點(diǎn),若直線與直線的斜率之和為證明: 過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若任意,不等式恒成立,求實(shí)數(shù)的取值范圍;

(2)求證:對任意, ,都有成立;

(3)對于給定的正數(shù),有一個(gè)最大的正數(shù),使得整個(gè)區(qū)間上,不等式恒成立,求出的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線關(guān)于直線對稱的直線為,直線與橢圓分別交于點(diǎn)、,記直線的斜率為.

(Ⅰ)求的值;

(Ⅱ)當(dāng)變化時(shí),試問直線是否恒過定點(diǎn)? 若恒過定點(diǎn),求出該定點(diǎn)坐標(biāo);若不恒過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,異面直線A1D與D1C所成的角為(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x>0時(shí),函數(shù)f(x)的解析式為
(1)求當(dāng)x<0時(shí)函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(0,+∞)上的是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD中,
(1)點(diǎn)E是AB的中點(diǎn),點(diǎn)F是BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于點(diǎn)A′.求證:A′D⊥EF.
(2)當(dāng)BE=BF=BC時(shí),求三棱錐A′﹣EFD體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(Ⅰ)當(dāng)時(shí),判斷函數(shù)的零點(diǎn)個(gè)數(shù);

(Ⅱ)若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】分別過橢圓E: =1(a>b>0)左、右焦點(diǎn)F1、F2的動直線l1、l2相交于P點(diǎn),與橢圓E分別交于A、B與C、D不同四點(diǎn),直線OA、OB、OC、OD的斜率分別為k1、k2、k3、k4 , 且滿足k1+k2=k3+k4 , 已知當(dāng)l1與x軸重合時(shí),|AB|=2 ,|CD|=
(1)求橢圓E的方程;
(2)是否存在定點(diǎn)M,N,使得|PM|+|PN|為定值?若存在,求出M、N點(diǎn)坐標(biāo),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案