【題目】已知函數(shù).

(1)若上單調(diào)遞減,求的取值范圍;

(2)若處取得極值,判斷當(dāng)時,存在幾條切線與直線平行,請說明理由;

(3)若有兩個極值點,求證:.

【答案】();()答案見解析;()證明見解析.

【解析】

()由題意可得恒成立 ,構(gòu)造函數(shù),令,由導(dǎo)函數(shù)的解析式可知遞增,遞減, 據(jù)此計算可得實數(shù)a的取值范圍.

()處取得極值可得.原問題等價于求解在區(qū)間內(nèi)解的個數(shù),結(jié)合導(dǎo)函數(shù)的解析式研究函數(shù)的單調(diào)性和函數(shù)在特殊點處的函數(shù)值即可確定切線的條數(shù).而事實情況下檢驗時函數(shù)不存在極值點,所以不存在滿足題意的實數(shù),也不存在滿足題意的切線.

()若函數(shù)有兩個極值點,不妨設(shè),易知,結(jié)合函數(shù)的解析式和零點的性質(zhì)即可證得題中的不等式.

()由已知,恒成立

,

,

,,解得:,,解得:,

遞增,遞減,

,由恒成立可得.

即當(dāng)上單調(diào)遞減時,的取值范圍是.

()處取得極值,則,可得.

,即 .

設(shè),則.

上單調(diào)遞增,在上單調(diào)遞減,

注意到,,

則方程內(nèi)只有一個實數(shù)根,

即當(dāng)時,只有一條斜率為且與函數(shù)圖像相切的直線.

但事實上,若,則,

故函數(shù)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,

,故函數(shù)在區(qū)間上恒成立,

函數(shù)在區(qū)間上單調(diào)遞減,即函數(shù)不存在極值點,

即不存在滿足題意的實數(shù),也不存在滿足題意的切線.

()若函數(shù)有兩個極值點,不妨設(shè),

()可知,且:

,

,

由①-②得:,

,

由①+②得:,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時,若函數(shù)的導(dǎo)函數(shù)的圖象與軸交于, 兩點,其橫坐標分別為, ,線段的中點的橫坐標為,且, 恰為函數(shù)的零點,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐PABCD中,底面是邊長為2的菱形,∠BAD60°PBPD2,PAACBDO

1)設(shè)平面ABP平面DCPl,證明:lAB

2)若EPA的中點,求三棱錐PBCE的體積VPBCE

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,直線lyx3經(jīng)過橢圓1ab0)的一個焦點,且點(0,b)到直線l的距離為2

1)求橢圓E的方程;

2AB、C是橢圓E上的三個動點,AB關(guān)于原點對稱,且|CA||CB|,求△ABC面積的最小值,并求此時點C的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的左右焦點分別為,點為短軸的一個端點,.

1)求橢圓C的方程;

2)如圖,過右焦點,且斜率為k)的直線l與橢圓C相交于D,E兩點,A為橢圓的右頂點,直線,分別交直線于點M,N,線段的中點為P,記直線的斜率為.試問是否為定值?若為定值,求出該定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】養(yǎng)路處建造圓錐形無底倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12m,高4m,養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4m(高不變);二是高度增加4m(底面直徑不變).

(1)分別計算按這兩種方案所建的倉庫的體積;

(2)分別計算按這兩種方案所建的倉庫的表面積;

(3)哪個方案更經(jīng)濟些?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點為,拋物線過點.

(Ⅰ)求拋物線的標準方程與其準線的方程;

(Ⅱ)過點作直線與拋物線交于兩點,過,分別作拋物線的切線,證明兩條切線的交點在拋物線的準線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)院治療白血病有甲、乙兩套方案,現(xiàn)就70名患者治療后復(fù)發(fā)的情況進行了統(tǒng)計,得到其等高條形圖如圖所示(其中采用甲、乙兩種治療方案的患者人數(shù)之比為

(1)補充完整列聯(lián)表中的數(shù)據(jù),并判斷是否有把握認為甲乙兩套治療方案對患者白血病復(fù)發(fā)有影響;

復(fù)發(fā)

未復(fù)發(fā)

總計

甲方案

乙方案

2

總計

70

(2)為改進“甲方案”,按分層抽樣組成了由5名患者構(gòu)成的樣本,求隨機抽取2名患者恰好是復(fù)發(fā)患者和未復(fù)發(fā)患者各1名的概率.

附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)當(dāng)時,求函數(shù)在點處的切線方程;

2)若函數(shù)存在兩個極值點,

①求實數(shù)的范圍;

②證明:.

查看答案和解析>>

同步練習(xí)冊答案