【題目】下表是最近十屆奧運(yùn)會(huì)的年份、屆別、主辦國,以及主辦國在上屆獲得的金牌數(shù)、當(dāng)屆
獲得的金牌數(shù)的統(tǒng)計(jì)數(shù)據(jù):
年份 | 1972 | 1976 | 1980 | 1984 | 1988 | 1992 | 1996 | 2000 | 2004 | 2008 |
屆別 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 |
主辦國家 | 聯(lián)邦 德國 | 加拿大 | 蘇聯(lián) | 美國 | 韓國 | 西班牙 | 美國 | 澳大 利亞 | 希臘 | 中國 |
上屆金牌數(shù) | 5 | 0 | 49 | 未參加 | 6 | 1 | 37 | 9 | 4 | 32 |
當(dāng)界金牌數(shù) | 13 | 0 | 80 | 83 | 12 | 13 | 44 | 16 | 6 | 51 |
某體育愛好組織,利用上表研究所獲金牌數(shù)與主辦奧運(yùn)會(huì)之間的關(guān)系,
(1)求出主辦國在上屆所獲金牌數(shù)(設(shè)為)與在當(dāng)屆所獲金牌數(shù)(設(shè)為)之間的線性回歸方程
其中
(2)在2008年第29屆北京奧運(yùn)會(huì)上日本獲得9塊金牌,則據(jù)此線性回歸方程估計(jì)在2020 年第 32 屆東
京奧運(yùn)會(huì)上日本將獲得的金牌數(shù)為(所有金牌數(shù)精確到整數(shù))
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程為ρcosθ=4.
(Ⅰ)M為曲線C1上的動(dòng)點(diǎn),點(diǎn)P在線段OM上,且滿足|OM||OP|=16,求點(diǎn)P的軌跡C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)A的極坐標(biāo)為(2, ),點(diǎn)B在曲線C2上,求△OAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某超市計(jì)劃按月訂購一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:
最高氣溫 | [10,15) | [15,20) | [20,25) | [25,30) | [30,35) | [35,40) |
天數(shù) | 2 | 16 | 36 | 25 | 7 | 4 |
以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.
(Ⅰ)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列;
(Ⅱ)設(shè)六月份一天銷售這種酸奶的利潤為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量n(單位:瓶)為多少時(shí),Y的數(shù)學(xué)期望達(dá)到最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)(x∈R)滿足f(x)=f(2-x),且對(duì)任意的x1,x2∈(-∞,1](x1≠x2)有(x1-x2)(f(x1)-f(x2))<0.則( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)一個(gè)樣本容量為100的數(shù)據(jù)分組,各組的頻數(shù)如表:
區(qū)間 | [17,19) | [19,21) | [21,23) | [23,25) | [25,27) | [27,29) | [29,31) | [31,33] |
頻數(shù) | 1 | 1 | 3 | 3 | 18 | 16 | 28 | 30 |
估計(jì)小于29的數(shù)據(jù)大約占總體的( )
A. 16% B. 40% C. 42% D. 58%
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,其中AD∥BC,AB⊥AD,AB=AD= BC, = .
(1)求證:DE⊥平面PAC;
(2)若直線PE與平面PAC所成角的正弦值為 ,求二面角A﹣PC﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程是 (θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,A、B的極坐標(biāo)分別為A﹣(2,0)、B(﹣1, )
(1)求直線AB的直角坐標(biāo)方程;
(2)在曲線C上求一點(diǎn)M,使點(diǎn)M到AB的距離最大,并求出些最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個(gè)命題:
①圓與直線相交,所得弦長為;
②直線與圓恒有公共點(diǎn);
③若棱長為的正方體的頂點(diǎn)都在同一球面上,則該球的表面積為;
④若棱長為的正四面體的頂點(diǎn)都在同一球面上,則該球的體積為.
其中,正確命題的序號(hào)為__________.(寫出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域?yàn)?/span>R的函數(shù)f(x)滿足:對(duì)于任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且當(dāng)x<0時(shí),f(x)>0恒成立,且nf(x)=f(nx).(n是一個(gè)給定的正整數(shù)).
(1)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(2)證明f(x)為減函數(shù);若函數(shù)f(x)在[-2,5]上總有f(x)≤10成立,試確定f(1)應(yīng)滿足的條件;
(3)當(dāng)a<0時(shí),解關(guān)于x的不等式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com