【題目】對一個樣本容量為100的數(shù)據(jù)分組,各組的頻數(shù)如表:

區(qū)間

[17,19)

[19,21)

[21,23)

[23,25)

[25,27)

[27,29)

[29,31)

[31,33]

頻數(shù)

1

1

3

3

18

16

28

30

估計小于29的數(shù)據(jù)大約占總體的( )

A. 16% B. 40% C. 42% D. 58%

【答案】C

【解析】試題分析:由表格可以看出,樣本在區(qū)間[17,29)上的數(shù)據(jù)個數(shù),樣本容量為100,進而得到小于29的數(shù)據(jù)大約占總體的42%.

詳解:

由表格可以看出,樣本在區(qū)間[17,29)上的數(shù)據(jù)個數(shù)為1+1+3+3+18+16=42個數(shù)據(jù),

樣本容量為100,∴樣本在區(qū)間[17,29)上的頻率為

則估計小于29的數(shù)據(jù)大約占總體的42%,

故選:C .

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,為使輸出S的值小于91,則輸入的正整數(shù)N的最小值為( )

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過原點的動直線l與圓相交于不同的兩點A,B.

(1)求線段AB的中點M的軌跡C的方程;

(2)是否存在實數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知0<a<b,且a+b=1,則下列不等式中正確的是(
A.log2a>0
B.2ab
C.log2a+log2b<﹣2
D.2 +

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】國慶假期是實施免收小型客車高速通行費的重大節(jié)假日,有一個群名為天狼星的自駕游車隊,該車隊是由31輛身長約為(以計算)的同一車型組成,行程中經(jīng)過一個長為2725的隧道(通過隧道的車速不超過),勻速通過該隧道,設車隊的速度為根據(jù)安全和車流的需要,相鄰兩車之間保持的距離;相鄰兩車之間保持的距離,自第一輛車車頭進入隧道至第31輛車車尾離開隧道所用的時間

(1)將表示成為的函數(shù);

(2)求該車隊通過隧道時間的最小值及此時車隊的速度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下表是最近十屆奧運會的年份、屆別、主辦國,以及主辦國在上屆獲得的金牌數(shù)、當屆

獲得的金牌數(shù)的統(tǒng)計數(shù)據(jù):

年份

1972

1976

1980

1984

1988

1992

1996

2000

2004

2008

屆別

20

21

22

23

24

25

26

27

28

29

主辦國家

聯(lián)邦

德國

加拿大

蘇聯(lián)

美國

韓國

西班牙

美國

澳大

利亞

希臘

中國

上屆金牌數(shù)

5

0

49

未參加

6

1

37

9

4

32

當界金牌數(shù)

13

0

80

83

12

13

44

16

6

51

某體育愛好組織,利用上表研究所獲金牌數(shù)與主辦奧運會之間的關系,

(1)求出主辦國在上屆所獲金牌數(shù)(設為)與在當屆所獲金牌數(shù)(設為)之間的線性回歸方程

其中

(2)在2008年第29屆北京奧運會上日本獲得9塊金牌,則據(jù)此線性回歸方程估計在2020 年第 32 屆東

京奧運會上日本將獲得的金牌數(shù)為(所有金牌數(shù)精確到整數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校某次N名學生的學科能力測評成績(滿分120分)的頻率分布直方圖如下,已知分數(shù)在100﹣110的學生數(shù)有21人
(1)求總人數(shù)N和分數(shù)在110﹣115分的人數(shù)n.;
(2)現(xiàn)準備從分數(shù)在110﹣115的n名學生(女生占 )中選3位分配給A老師進行指導,設隨機變量ξ表示選出的3位學生中女生的人數(shù),求ξ的分布列與數(shù)學期望Eξ;
(3)為了分析某個學生的學習狀態(tài),對其下一階段的學習提供指導建議,對他前7次考試的數(shù)學成績x、物理成績y進行分析,該生7次考試成績?nèi)绫?

數(shù)學(x)

88

83

117

92

108

100

112

物理(y)

94

91

108

96

104

101

106

已知該生的物理成績y與數(shù)學成績x是線性相關的,求出y關于x的線性回歸方程 = x+ .若該生的數(shù)學成績達到130分,請你估計他的物理成績大約是多少?
附:對于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸方程 = x+ 的斜率和截距的最小二乘估計分別為 = ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學在“三關心”(即關心家庭、關心學校、關心社會)的專題中,對個稅起征點問題進行了學習調(diào)查.學校決定從高一年級800人,高二年級1000人,高三年級800人中按分層抽樣的方法共抽取13人進行談話,其中認為個稅起征點為3000元的有3人,認為個稅起征點為4000元的有6人,認為個稅起征點為 5000元的有4人.

(1)求高一年級、高二年級、高三年級分別抽取多少人?

(2)從13人中選出3人,求至少有1人認為個稅起征點為4000元的概率;

(3)記從13人中選出3人中認為個稅起征點為4000元的人數(shù)為,求的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在數(shù)列{an},{bn}中,a1=2,b1=4且an , bn , an+1成等差數(shù)列,bn , an+1 , bn+1成等比數(shù)列(n∈N*
(1)求a2 , a3 , a4及b2 , b3 , b4;由此歸納出{an},{bn}的通項公式,并證明你的結論.
(2)若cn=log2),Sn=c1+c2+…+cn , 試問是否存在正整數(shù)m,使Sm≥5,若存在,求最小的正整數(shù)m.

查看答案和解析>>

同步練習冊答案