【題目】已知函數(shù),且函數(shù)在處取到極值.
(1)求曲線在處的切線方程;
(2)若函數(shù),且函數(shù)有3個(gè)極值點(diǎn),,,證明:.
【答案】(1);(2)證明見(jiàn)解析
【解析】
(1)求出原函數(shù)的導(dǎo)函數(shù),由求解值,則曲線在處的切線方程可求;
(2)求出函數(shù)的解析式,由,根據(jù)已知有
三個(gè)解,存在兩個(gè)不同于的零點(diǎn), 設(shè),求出取值范圍,結(jié)合的函數(shù)特征,可判斷是函數(shù)的兩個(gè)零點(diǎn),構(gòu)造函數(shù),研究的單調(diào)性,把證明轉(zhuǎn)化為證明即可.
(1), ,
函數(shù)在處取到極值,,即.
則,,
∴曲線在處的切線方程為;
(2),
函數(shù)的定義域?yàn)?/span>且,
令,,
在上單調(diào)遞減,在上單調(diào)遞增;
是的最小值;有三個(gè)極值點(diǎn),
,得.
的取值范圍為,
當(dāng)時(shí),,,
;即,是函數(shù)的兩個(gè)零點(diǎn).
,消去得;
令,,
的零點(diǎn)為,且.
在上遞減,在上遞增.
要證明,即證,
等價(jià)于證明,即.
,即證.
構(gòu)造函數(shù),則;
只要證明在上單調(diào)遞減,
函數(shù) 在單調(diào)遞減;
增大時(shí),減小,增大,減小,
在上是減函數(shù).
在上是減函數(shù).
當(dāng)時(shí), .
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若1路、2路公交車(chē)均途經(jīng)泉港一中校門(mén)口,其中1路公交車(chē)每10分鐘一趟,2路公交車(chē)每20分鐘一趟,某生去坐這2趟公交車(chē)回家,則等車(chē)不超過(guò)5分鐘的概率是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面,,,,為的中點(diǎn),是上的點(diǎn).
(1)若平面,證明:平面.
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓:的左頂點(diǎn)為,右焦點(diǎn)為,斜率為1的直線與橢圓交于,兩點(diǎn),且,其中為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)點(diǎn)且與直線平行的直線與橢圓交于,兩點(diǎn),若點(diǎn)滿(mǎn)足,且與橢圓的另一個(gè)交點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于漸近線方程為的雙曲線有下述四個(gè)結(jié)論:①實(shí)軸長(zhǎng)與虛軸長(zhǎng)相等,②離心率是③過(guò)焦點(diǎn)且與實(shí)軸垂直的直線被雙曲線截得的線段長(zhǎng)與實(shí)軸長(zhǎng)相等,④頂點(diǎn)到漸近線與焦點(diǎn)到漸近線的距離比值為.其中所有正確結(jié)論的編號(hào)( )
A.①②B.①③C.①②③D.②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,橢圓與軸交于 兩點(diǎn),且.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓上的一個(gè)動(dòng)點(diǎn),且直線與直線分別交于 兩點(diǎn).是否存在點(diǎn)使得以 為直徑的圓經(jīng)過(guò)點(diǎn)?若存在,求出點(diǎn)的橫坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—5;不等式選講.
已知函數(shù).
(1)若的解集非空,求實(shí)數(shù)的取值范圍;
(2)若正數(shù)滿(mǎn)足, 為(1)中m可取到的最大值,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克, 原料1千克.每桶甲產(chǎn)品的利潤(rùn)是300元,每桶乙產(chǎn)品的利潤(rùn)是400元.公司在生產(chǎn)這兩種產(chǎn)品的計(jì)劃中,要求每天消耗原料都不超過(guò)12千克.通過(guò)合理安排生產(chǎn)計(jì)劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤(rùn)是__________元.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)證明:當(dāng)時(shí),;
(2)若函數(shù)只有一個(gè)零點(diǎn),求正實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com