己知數(shù)列的前n項(xiàng)和為,,當(dāng)n≥2時(shí),,成等差數(shù)列. (1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù).

(1)
(2)10

解析試題分析:解.(1)當(dāng)n≥2時(shí),2= ①
所以2 ②
②-①化簡得,又,求得用該公式表示,
所以數(shù)列是以2為首項(xiàng),3為公比的等比數(shù)列,求得         7分
(2)求得,所以,所以,
恒成立,所以最小正整數(shù)的值為10         14分. 
考點(diǎn):等比數(shù)列
點(diǎn)評(píng):主要是考查了等比數(shù)列以及數(shù)列求和的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前n項(xiàng)的和的關(guān)系是.
(1)求并歸納出數(shù)列的通項(xiàng)(不需證明);
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中,
(1)求證:數(shù)列是等差數(shù)列
(2)求數(shù)列的通項(xiàng)公式
(3)設(shè)數(shù)列的前項(xiàng)和為,是否存在實(shí)數(shù),使得對(duì)一切正整數(shù)都成立?若存在,求的最小值,若不存在,試說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,點(diǎn)在函數(shù)的圖象上,其中
(1)證明:數(shù)列是等比數(shù)列,并求數(shù)列的通項(xiàng)公式;
(2)記,求數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知等差數(shù)列的前項(xiàng)和滿足,
(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)等差數(shù)列的各項(xiàng)均為正數(shù),,前項(xiàng)和為,等比數(shù)列中,,是公比為64的等比數(shù)列.
(Ⅰ)求;   
(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù),數(shù)列的前n項(xiàng)和,且同時(shí)滿足:
① 不等式 ≤ 0的解集有且只有一個(gè)元素;
② 在定義域內(nèi)存在,使得不等式成立.
(1) 求函數(shù)的表達(dá)式;
(2) 求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和,
(1)求通項(xiàng)公式an ;(2)令,求數(shù)列{bn}前n項(xiàng)的和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項(xiàng)和為
(Ⅰ)計(jì)算
(Ⅱ)根據(jù)(Ⅰ)所得到的計(jì)算結(jié)果,猜想的表達(dá)式,不必證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案