函數(shù),數(shù)列的前n項(xiàng)和,且同時(shí)滿足:
① 不等式 ≤ 0的解集有且只有一個(gè)元素;
② 在定義域內(nèi)存在,使得不等式成立.
(1) 求函數(shù)的表達(dá)式;
(2) 求數(shù)列的通項(xiàng)公式.
(1)a=4,即
(2)
解析試題分析:解:(1)∵不等式f (x) ≤ 0的解集有且只有一個(gè)元素,∴,解得a=0或a=4.
當(dāng)a=0時(shí),函數(shù)在(0,+∞)上遞增,不滿足條件②;
當(dāng)a=4時(shí),函數(shù)在(0,2)上遞減,滿足條件②.
綜上得a=4,即.
(2)由(1)知,
當(dāng)n=1時(shí),; 當(dāng)n ≥ 2時(shí)
∴
考點(diǎn):一元二次不等式,數(shù)列的通項(xiàng)公式
點(diǎn)評(píng):主要是考查了二次不等式以及數(shù)列的通項(xiàng)公式與求和之間的關(guān)系的運(yùn)用,屬于中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
根據(jù)如圖所示的程序框圖,將輸出的x,y值依次分別記為x1,x2,…,xk,…;y1,y2,…,yk,….
(1)分別求數(shù)列{xk}和{yk}的通項(xiàng)公式;
(2)令zk=xkyk,求數(shù)列{zk}的前k項(xiàng)和Tk,其中k∈N*,k≤2 007.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前項(xiàng)和為.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)記,求證:;
(Ⅲ)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
己知數(shù)列的前n項(xiàng)和為,,當(dāng)n≥2時(shí),,,成等差數(shù)列. (1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),是數(shù)列的前n項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,, 且.
(1)求,的值;
(2)證明:數(shù)列是等比數(shù)列,并求的通項(xiàng)公式;
(3)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若S是公差不為0的等差數(shù)列的前項(xiàng)和,且成等比數(shù)列。
(1)求等比數(shù)列的公比;
(2)若,求的通項(xiàng)公式;
(3)設(shè),是數(shù)列的前項(xiàng)和,求使得對(duì)所有都成立的最小正整數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列中,,且滿足 .
(Ⅰ)求及數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知數(shù)列的前項(xiàng)和為,且 N.
(1) 求數(shù)列的通項(xiàng)公式;
(2)若是三個(gè)互不相等的正整數(shù),且成等差數(shù)列,試判斷
是否成等比數(shù)列?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com