【題目】如圖,平面平面,,點(diǎn)E,F分別在線段AB,CD上,且.求證:.

【答案】證明見解析

【解析】

ABCD位置關(guān)系分類討論,若AB,CD共面,可得,結(jié)合已知條件可證,即可得證結(jié)論;AB,CD異面,作于點(diǎn)H,連接BHHD,根據(jù)面面平行的性質(zhì)定理,可證,作AH于點(diǎn)G,可得,結(jié)合已知條件,可證,進(jìn)而證明,得到平面,即可證明結(jié)論.

證明:(1)當(dāng)AB,CD共面時,

因?yàn)?/span>,且平面平面,

平面平面,所以.

所以四邊形ABDC是梯形或平行四邊形.

,得.

,,所以.

2)當(dāng)ABCD異面時,

于點(diǎn)H,連接BH,HD,如圖所示.

因?yàn)?/span>,且平面AHDC與平面,的交線分別為AC,HD

所以.所以四邊形AHDC為平行四邊形.

AH于點(diǎn)G,連接EG,于是.

因?yàn)?/span>,所以,從而.

,所以.

因?yàn)?/span>,,所以.

平面EFG,平面EFG,

所以平面.

平面EFG,,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)全集為R,集合A={x|-3x4}B={x|1≤x≤10}

1)求AB,ARB);

2)已知集合C={x|2a-1≤xa+1},若CA=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 如圖是正方體的平面展開圖在這個正方體中

①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.

以上四個命題中,正確命題的序號是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱錐P-ABC,D,E,F(xiàn)分別是棱PA,PB,PC的中點(diǎn)求證平面DEF∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐平面,,,且,,.

(1)求證:;

(2)在線段上,是否存在一點(diǎn),使得二面角的大小為,如果存在,求與平面所成角的正弦值,如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】程大位是明代著名數(shù)學(xué)家,他的《新編直指算法統(tǒng)宗》是中國歷史上一部影響巨大的著作,它問世后不久便風(fēng)行宇內(nèi),成為明清之際研習(xí)數(shù)學(xué)者必讀的教材,而且傳到朝鮮、日本及東南亞地區(qū),對推動漢字文化圈的數(shù)學(xué)發(fā)展起了重要的作用.卷八中第33問是:“今有三角果一垛,底闊每面七個,問該若干?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,求得該垛果子的總數(shù)為( )

A. 120 B. 84 C. 56 D. 28

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的極小值;

(2)求證:當(dāng)時,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)的圖象在點(diǎn)處的切線方程為,求,的值;

(2)當(dāng)時,在區(qū)間上至少存在一個,使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動.活動規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費(fèi)218元,可轉(zhuǎn)動轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.

1)若某位顧客消費(fèi)128元,求返券金額不低于30元的概率;

2)若某位顧客恰好消費(fèi)280元,并按規(guī)則參與了活動,他獲得返券的金額記為(元).求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案