設(shè)函數(shù)f(x)=-
1
3
x3+
1
2
x2+2ax+4.
(1)若f(x)在區(qū)間(2,+∞)上存在單調(diào)遞增區(qū)間,求實數(shù)a的取值范圍;
(2)設(shè)0<a<2,f(x)在[1,3]上的最小值為-
1
3
,求函數(shù)f(x)在該區(qū)間上的最大值點(f(x)的最大值所對應(yīng)的x的值).
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)函數(shù)f(x)在(2,+∞)上存在單調(diào)遞增區(qū)間,即f′(x)>0在(2,+∞)上有解,只需f′(2)>0即可,當(dāng)a>1時,f(x)在(2,+∞)上存在單調(diào)遞增區(qū)間.
(2)解f′(x)=0,得出f(x)在區(qū)間(-∞,x1),(x2,+∞)上單調(diào)遞減,在(x1,x2)上單調(diào)遞增.討論當(dāng)0<a<2時,0<a<
7
6
時,
7
6
≤a<2時的情況,從而解決問題.
解答: 解:(1)函數(shù)f(x)在(2,+∞)上存在單調(diào)遞增區(qū)間,
即f′(x)>0在(2,+∞)上有解
因為f′(x)=-x2+x+2a,
所以只需f′(2)>0即可,
所以由f'(2)=-4+2+2a=2a-2>0,解得a>1,
∴當(dāng)a>1時,f(x)在(2,+∞)上存在單調(diào)遞增區(qū)間.
(2)由f′(x)=-x2+x+2a=0,解得:x1=
1-
1+8a
2
,x2=
1+
1+8a
2
,
∴f(x)在區(qū)間(-∞,x1),(x2,+∞)上單調(diào)遞減,在(x1,x2)上單調(diào)遞增.
當(dāng)0<a<2時,x1<0,1<x2<3所以f(x)在[1,3]上的最大值點為x=x2
∵f(3)-f(1)=-
14
3
+4a,
∴0<a<
7
6
時,即f(3)<f(1),
∴f(x)在[1,3]上的最小值為f(3)=6a-
1
2
=-
1
3
,解得:a=
1
36

∴函數(shù)f(x)的最大值點為x=x2=
3+
11
6
,
7
6
≤a<2時,即f(1)<f(3),
∴f(x)在[1,3]上的最小值為f(1)=2a+
25
6
=-
1
3
,解得:a=-
9
4
(舍).
點評:本題考查了函數(shù)的單調(diào)性,函數(shù)的最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

巳知函數(shù)f(x)=x2-2ax-2alnx,g(x)=ln2x+2a2,其中x>0,a∈R.
(Ⅰ)若x=1是函數(shù)f(x)的極值點,求a的值;
(Ⅱ)若f(x)在區(qū)間(2,+∞)上單調(diào)遞增,求a的取值范圍;
(Ⅲ)記F(x)=f(x)+g(x),求證:F(x)≥
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面是正方形,PD⊥底面ABCD,點E在棱PB上.
(Ⅰ)求證:PB⊥AC;
(Ⅱ)當(dāng)PD=2AB,E在何位置時,PB⊥平面EAC;
(Ⅲ)在(Ⅰ)的情況下,求二面E-AC-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m(a),M(a)分別是函數(shù)y=x2-ax+0.5a(a>0,0≤x≤1)的最小值和最大值,
(1)求m(a),M(a);
(2)求最值m(a),M(a)的最大值或最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a≠0)的圖象關(guān)于直線x=-
b
2a
對稱,則方程m[f(x)]2+nf(x)+p的根是否關(guān)于x=-
b
2a
對稱(a,b,c,m,n,p為任意非零實數(shù))?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx(a,b,c∈R).
(Ⅰ)當(dāng)a>0時,f(x)在x=1處有極大值2,試討論f(x)在[0,2]上的單調(diào)性.
(Ⅱ)若f(x)為[-2,2]上的奇函數(shù),且任意的x∈[-2,2]恒有|f(x)|≤2,求c的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個等差數(shù)列的前10項之和為100,前100項之和為10,則其前110項之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知[x]表示不超過實數(shù)x的最大整數(shù)(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定義{x}=x-[x],則:
(1)設(shè)函數(shù)f(x)=
x        x≥0
f(x+1)  x<0
,則函數(shù)y=f(x)-
1
4
x-
1
4
的不同零點有
 
個;
(2){
2013
2014
}+{
20132
2014
}+{
20133
2014
}+…+{
20132014
2014
}=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足
an+2
an+1
+
an+1
an
=k(k為常數(shù)),則稱數(shù)列{an}為等比和數(shù)列,k稱為公比和,已知數(shù)列{an}是以3為公比和的等比和數(shù)列,其中a1=1,a2=2,則a2013=
 

查看答案和解析>>

同步練習(xí)冊答案