已知單調(diào)遞增的等比數(shù)列{an}的前n項(xiàng)和為Sn,且a2=2,S3=7.
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an+1(n∈N*),數(shù)列{
1
bnbn+1
}的前n項(xiàng)和Tn,求證Tn
3
4
考點(diǎn):數(shù)列與不等式的綜合,等比數(shù)列的通項(xiàng)公式,數(shù)列的求和
專題:綜合題,等差數(shù)列與等比數(shù)列
分析:(I)設(shè)首項(xiàng)為a1,公比為q,根據(jù)等比數(shù)列的通項(xiàng)公式和求和公式聯(lián)立方程求得a1和為q,進(jìn)而可得數(shù)列的通項(xiàng)公式.
(Ⅱ)把(I)中求得的an代入到cn中,進(jìn)而利用裂項(xiàng)法求得數(shù)列{
1
bnbn+1
}的前n項(xiàng)之和Tn,即可證明結(jié)論.
解答: (I)解:設(shè)首項(xiàng)為a1,公比為q,
由條件可得a1q=2,a1+a1q+a1q2=7
∵q>1,
∴q=2,a1=1,∴an=a1qn-1=2n-1;
(Ⅱ)證明:∵bn=log2an+1=log22n=n,
1
bnbn+1
=
1
n(n+1)
=
1
n
-
1
n+1

∴Tn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
≥1-
1
2
3
4
點(diǎn)評(píng):本題主要考查了等比數(shù)列的通項(xiàng)公式和數(shù)列的求和問(wèn)題.考查了學(xué)生對(duì)數(shù)列基本知識(shí)的掌握
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直三棱柱ABC-A1B1C1中,AB=AA1=2CA,∠CAB=
π
2
,則直線AC1與直線A1B夾角的余弦值為( 。
A、
5
5
B、
2
5
5
C、
10
5
D、
15
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(2+a)x+a2lnx,g(x)=x2+2x+b(a,b∈R).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)兩曲線y=f(x)與y=g(x)有公共點(diǎn),且在公共點(diǎn)處的切線相同,若a>0,試建立b關(guān)于a的函數(shù)關(guān)系式,并求b的最小值;
(Ⅲ)設(shè)b=2a2+2a,若對(duì)任意給定的x0∈(0,1],總存在兩個(gè)不同的xi(i=1,2),使得g(xi)+f(x0)=0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a2=-
1
7
,an=
an-1
(-1)nan-1-2
(n≥2,n∈N).
(1)求a1的值;
(2)求證:數(shù)列{
1
an
+(-1)n}是等比數(shù)列;
(3)設(shè)cn=ansin
(2n-1)π
2
,數(shù)列{cn}的前n項(xiàng)和為T(mén)n.求證:對(duì)任意的n∈N*,Tn
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,直線l:y=
3
與橢圓C相切.
(1)求橢圓C的方程;
(2)設(shè)AB是橢圓C上兩個(gè)動(dòng)點(diǎn),點(diǎn)P(-1,
3
2
)滿足
PA
+
PB
PO
(0<λ<4且λ≠2),求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=2,2an+1=2an+1,求an?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2(x-a)(a∈R),
(Ⅰ)當(dāng)a=3時(shí),求f(x)的極值點(diǎn);
(Ⅱ)若存在x0∈[1,2]時(shí),使得不等式f(x0)<-1成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在三棱柱ABC-A1B1C1中,已知AA1=8,AC=AB=5,BC=6,點(diǎn)A1在底面ABC的投影是線段BC的中點(diǎn)O,在側(cè)棱AA1上存在一點(diǎn)E,且OE⊥B1C.
(1)證明:OE⊥面BB1C1C.
(2)求出AE的長(zhǎng);
(3)求二面角A1-B1C-C1的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列條件求圓錐曲線的標(biāo)準(zhǔn)方程.
(1)已知橢圓的兩個(gè)焦點(diǎn)坐標(biāo)分別是(2,0),(-2,0),并且經(jīng)過(guò)點(diǎn)(
5
2
,-
3
2
);
(2)離心率是e=
2
,經(jīng)過(guò)點(diǎn)M(-5,3)的雙曲線.

查看答案和解析>>

同步練習(xí)冊(cè)答案