在中,“”是“為直角三角形”的
A.充分不必要條件 |
B.必要不充分條件 |
C.充要條件 |
D.既不充分又不必要條件 |
A
解析考點(diǎn):三角形的形狀判斷;必要條件、充分條件與充要條件的判斷.
分析:先證明充分性,設(shè) 與的夾角為α,利用平面向量的數(shù)量積運(yùn)算法則化簡? ,由已知? =0,得到cosα值為0,由α的范圍,利用特殊角的三角函數(shù)值求出α為直角,可得三角形ABC為直角三角形;反過來,若三角形ABC為直角三角形,但不一定B為直角,故必要性不一定成立.
解:當(dāng)? =0時(shí),
設(shè)與的夾角為α,
可得? =ac?cos(π-α)=-ac?cosα,
又? =0,
∴-ac?cosα=0,即cosα=0,
∵α∈(0,π)
∴α=,
則△ABC為直角三角形;
而當(dāng)△ABC為直角三角形時(shí),B不一定為直角,
故? 不一定等于0,
則在△ABC中,“? =0”是“△ABC為直角三角形”的充分不必要條件.
故選A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com