如圖所示,在直三棱柱ABC-A1B1C1中,底面是∠ABC為直角的等腰直角三角形,AC=2a,BB1=3a,D是A1C1的中點,點F在線段AA1上,當(dāng)AF=
a或2a
a或2a
時,CF⊥平面B1DF.
分析:利用已知條件判斷B1D⊥平面AC1,然后說明CF⊥DF.設(shè)AF=x(0<x<3a),通過CF2=x2+4a2,DF2=a2+(3a-x)2,又CD2=a2+9a2=10a2,求出x即可.
解答:解:由已知得B1D⊥平面AC1,
又CF?平面AC1,∴B1D⊥CF,
故若CF⊥平面B1DF,則必有CF⊥DF.
設(shè)AF=x(0<x<3a),則CF2=x2+4a2,
DF2=a2+(3a-x)2,又CD2=a2+9a2=10a2,
∴10a2=x2+4a2+a2+(3a-x)2
解得x=a或2a.
故答案為:a或2a.
點評:本題考查直線與平面的位置關(guān)系,考查空間想象能力以及計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AC⊥BC,AA1=AC=BC=2,D、E、F分別是AB、AA1、CC1的中點,P是CD上的點.
(1)求直線PE與平面ABC所成角的正切值的最大值;
(2)求證:直線PE∥平面A1BF;
(3)求直線PE與平面A1BF的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A′B′C′中,∠BAC=90°,AB=BB′=1,直線B′C與平面ABC成30°角.
(1)求證:A′B⊥面AB′C;
(2)求二面角B-B′C-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1,AC1⊥平面A1BD,D為AC的中點.
(Ⅰ)求證:B1C1⊥平面ABB1A1;
(Ⅱ)設(shè)E是CC1的中點,試求出A1E與平面A1BD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直三棱柱ABC-A1B1C1中,AB=BB1=BC,AC1⊥平面A1BD,D為AC的中點.
(1)求證:B1C∥平面A1BD;
(2)求證:B1C1⊥平面ABB1A1
(3)在CC1上是否存在一點E,使得∠BA1E=45°,若存在,試確定E的位置,并判斷平面A1BD與平面BDE是否垂直?若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案