設(shè)為x,y正實(shí)數(shù),且2x+5y=20,求的最大值。

 

【答案】

當(dāng)時(shí),取最大值,最大值為1.

【解析】

試題分析:

當(dāng)且僅當(dāng),即:時(shí)取等號(hào)。

當(dāng)時(shí),取最大值,最大值為1.

考點(diǎn):對(duì)數(shù)運(yùn)算法則,均值定理的應(yīng)用。

點(diǎn)評(píng):中檔題,應(yīng)用均值定理,要注意“一正,二定,三相等”。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x、y均為正實(shí)數(shù),且
3
2+x
+
3
2+y
=1
,則xy的最小值為(  )
A、4
B、4
3
C、9
D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-2:矩陣及其變換
(1)如圖,向量
OA
OB
被矩陣M作用后分別變成
OA′
OB′
,
(Ⅰ)求矩陣M;
(Ⅱ)并求y=sin(x+
π
3
)
在M作用后的函數(shù)解析式;
選修4-4:坐標(biāo)系與參數(shù)方程
( 2)在直角坐標(biāo)系x0y中,直線l的參數(shù)方程為
x=3-
2
2
t
y=
5
+
2
2
t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系x0y取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=2
5
sinθ

(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A,B.若點(diǎn)P的坐標(biāo)為(3,
5
),求|PA|+|PB|.
選修4-5:不等式選講
(3)已知x,y,z為正實(shí)數(shù),且
1
x
+
1
y
+
1
z
=1
,求x+4y+9z的最小值及取得最小值時(shí)x,y,z的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y均為正實(shí)數(shù),且xy-x-y-8=0,則xy的最小值為
16
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)為x,y正實(shí)數(shù),且2x+5y=20,求μ=lgx+lgy的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案