【題目】ABC中,已知AB=2,AC=3,BC=

(1)求角A的大;

(2)求cos(B﹣C)的值

【答案】(1)(2)

【解析】

(1)利用余弦定理求得的值,由此求得的大小.(2)利用正弦定理求得的值,利用同角三角函數(shù)的基本關(guān)系式求得的值,利用二倍角公式求得的值,再利用兩角差的余弦公式求得的值.

解:

(1)由余弦定理得:cosA,

因?yàn)?/span>A(0,π),所以A

(2)由正弦定理得:,所以sin C

又因?yàn)?/span>ABBC,所以CA

0<C,所以cosC

所以sin2C=2 sinC cosC=2··

cos2C=2cos2C-1=2()2-1=

因?yàn)?/span>ABCπA.所以BC,所以BC,

所以cos(B-C)=cos(-2C)=coscos2C+sinsin2C=(-·

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線為其焦點(diǎn),拋物線的準(zhǔn)線交軸于點(diǎn)T,直線l交拋物線于A,B兩點(diǎn)。

(1)O為坐標(biāo)原點(diǎn),直線l過(guò)拋物線焦點(diǎn),且,求△AOB的面積;

(2)當(dāng)直線l與坐標(biāo)軸不垂直時(shí),若點(diǎn)B關(guān)于x軸的對(duì)稱點(diǎn)在直線AT上,證明直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的一個(gè)最高點(diǎn)為,與點(diǎn)相鄰一個(gè)最低點(diǎn)為,直線軸的交點(diǎn)為.

1)求函數(shù)的解析式;

2)求函數(shù)的單調(diào)增區(qū)間;

3)若時(shí),函數(shù)恰有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓E:的離心率為,點(diǎn)A(2,1)是橢圓E上的點(diǎn)

(1)求橢圓E的方程;

(2)過(guò)點(diǎn)A作兩條互相垂直的直線l1,l2分別與橢圓E交于B,C兩點(diǎn),己知ABC的面積為,求直線BC的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知都是各項(xiàng)為正數(shù)的數(shù)列,且,.對(duì)任意的正整數(shù)n,都有,成等差數(shù)列,,成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)若存在p>0,使得集合M=恰有一個(gè)元素,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知以C為圓心的圓及其上一點(diǎn).

1)設(shè)平行于的直線與圓C相交于兩點(diǎn),且,求直線的方程;

2)設(shè)點(diǎn)滿足:存在圓C上的兩點(diǎn)使得,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)調(diào)查,某地區(qū)有300萬(wàn)從事傳統(tǒng)農(nóng)業(yè)的農(nóng)民,人均年收入6000元,為了增加農(nóng)民的收入,當(dāng)?shù)卣e極引進(jìn)資本,建立各種加工企業(yè),對(duì)當(dāng)?shù)氐霓r(nóng)產(chǎn)品進(jìn)行深加工,同時(shí)吸收當(dāng)?shù)夭糠洲r(nóng)民進(jìn)入加工企業(yè)工作,據(jù)估計(jì),如果有萬(wàn)人進(jìn)企業(yè)工作,那么剩下從事傳統(tǒng)農(nóng)業(yè)的農(nóng)民的人均年收入有望提高,而進(jìn)入企業(yè)工作的農(nóng)民的人均年收入為元.

1)在建立加工企業(yè)后,多少農(nóng)民進(jìn)入企業(yè)工作,能夠使剩下從事傳統(tǒng)農(nóng)業(yè)農(nóng)民的總收入最大,并求出最大值;

2)為了保證傳統(tǒng)農(nóng)業(yè)的順利進(jìn)行,限制農(nóng)民加入加工企業(yè)的人數(shù)不能超過(guò)總?cè)藬?shù)的,當(dāng)?shù)卣绾我龑?dǎo)農(nóng)民,即取何值時(shí),能使300萬(wàn)農(nóng)民的年總收入最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)O是銳角△ABC的外心,a,b,c分別為內(nèi)角A、B、C的對(duì)邊,A= ,且,則λ的值為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某學(xué)校高三年級(jí)共800名男生中隨機(jī)抽取50名學(xué)生作為樣本測(cè)量身高.測(cè)量發(fā)現(xiàn)被測(cè)學(xué)生身高全部介于155cm195cm之間,將測(cè)量結(jié)果按如下方式分成八組:第一組;第二組;;第八組.下圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數(shù)相同,第六組與第八組人數(shù)之和為第七組的兩倍.

1)估計(jì)這所學(xué)校高三年級(jí)全體男生身高在180cm以上(含180cm)的人數(shù);

2)求第六組和第七組的頻率并補(bǔ)充完整頻率分布直方圖.

查看答案和解析>>

同步練習(xí)冊(cè)答案