【題目】“公平正義”是社會主義和諧社會的重要特征,是社會主義法治理念的價值追求.“考試”作為一種公平公正選拔人才的有效途徑,正被廣泛采用.每次考試過后,考生最關心的問題是:自己的考試名次是多少?自已能否被錄取?能獲得什么樣的職位?
某單位準備通過考試(按照高分優(yōu)先錄取的原則)錄用名,其中個高薪職位和個普薪職位.實際報名人數(shù)為名,考試滿分為分. 考試后對部分考生考試成績進行抽樣分析,得到頻率分布直方圖如下:
試結合此頻率分布直方圖估計:
(1)此次考試的中位數(shù)是多少分(保留為整數(shù))?
(2)若考生甲的成績?yōu)?/span>280分,能否被錄取?若能被錄取,能否獲得高薪職位?(分數(shù)精確到個位,概率精確到千分位)
科目:高中數(shù)學 來源: 題型:
【題目】已知直線的極坐標方程為,曲線的參數(shù)方程為(為參數(shù)).
(1)求直線的直角坐標方程和曲線的普通方程;
(2)若過且與直線垂直的直線與曲線相交于、兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】瑞士數(shù)學家、物理學家歐拉發(fā)現(xiàn)任一凸多面體(即多面體內任意兩點的連線都被完全包含在該多面體中,直觀上講是指沒有凹陷或孔洞的多面體)的頂點數(shù)V、棱數(shù)E及面數(shù)F滿足等式V﹣E+F=2,這個等式稱為歐拉多面體公式,被認為是數(shù)學領域最漂亮、簡潔的公式之一,現(xiàn)實生活中存在很多奇妙的幾何體,現(xiàn)代足球的外觀即取自一種不完全正多面體,它是由12塊黑色正五邊形面料和20塊白色正六邊形面料構成的.20世紀80年代,化學家們成功地以碳原子為頂點組成了該種結構,排列出全世界最小的一顆“足球”,稱為“巴克球(Buckyball)”.則“巴克球”的頂點個數(shù)為( )
A.180B.120C.60D.30
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若.
(。┣笄在點處的切線方程;
(ⅱ)求函數(shù)在區(qū)間內的極大值的個數(shù).
(2)若在內單調遞減,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,,分別為內角,,的對邊,若同時滿足下列四個條件中的三個:①;②;③;④.
(1)滿足有解三角形的序號組合有哪些?
(2)在(1)所有組合中任選一組,并求對應的面積.
(若所選條件出現(xiàn)多種可能,則按計算的第一種可能計分)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,且與交于,兩點,已知點的極坐標為.
(1)求曲線的普通方程和直線的直角坐標方程,并求的值;
(2)若矩形內接于曲線且四邊與坐標軸平行,求其周長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)其中
(1)當時,求曲線在點處的切線方程;
(2)當時,求函數(shù)的單調區(qū)間;
(3)若對于恒成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的幾何體中,正方形所在平面垂直于平面,四邊形為平行四邊形,G為上一點,且平面,.
(1)求證:平面平面;
(2)當三棱錐體積最大時,求平面與平面所成二面角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com