【題目】港珠澳大橋是一座具有劃時代意義的大橋.它連通了珠海香港澳門三地,大大縮短了三地的時空距離,盤活了珠江三角洲的經(jīng)濟,被譽為新的世界七大奇跡.截至201910238點,珠海公路口岸共驗放出入境旅客超過1400萬人次,日均客流量已經(jīng)達到4萬人次,驗放出入境車輛超過70萬輛次,2019年春節(jié)期間,客流再次大幅增長,日均客流達8萬人次,單日客流量更是創(chuàng)下11.3萬人次的最高紀錄.

2019年從五月一日開始的連續(xù)100天客流量頻率分布直方圖如下

1)①同一組數(shù)據(jù)用該區(qū)間的中點值代替,根據(jù)頻率分布直方圖.估計客流量的平均數(shù).

②求客流量的中位數(shù).

2)設這100天中客流量超過5萬人次的有天,從這天中任取兩天,設為這兩天中客流量超過7萬人的天數(shù).的分布列和期望.

【答案】1)①4.15,②4.125;(2)分布列見解析,

【解析】

1)①根據(jù)頻率分布直方圖估計平均數(shù)的方法,計算出平均數(shù);

②根據(jù)頻率分布直方圖估計中位數(shù)的方法,計算出中位數(shù);

2)根據(jù)超幾何分布的分布列和數(shù)學期望的計算方法,計算出的分布列和期望.

1)①平均值為

②設中位數(shù)為,則

解得中位數(shù)為

2)可知其中超過7萬人次的有5

0

1

2

所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,拋物線的焦點為,點是拋物線上一點,且

(1)求的值;

(2)若為拋物線上異于的兩點,且.記點到直線的距離分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2020年是我國全面建成小康社會和十三五規(guī)劃收官之年,也是佛山在經(jīng)濟總量超萬億元新起點上開啟發(fā)展新征程的重要歷史節(jié)點.作為制造業(yè)城市,佛山一直堅持把創(chuàng)新擺在制造業(yè)發(fā)展全局的前置位置和核心位置,聚焦打造成為面向全球的國家制造業(yè)創(chuàng)新中心,走世界科技+佛山智造+全球市場的創(chuàng)新發(fā)展之路.在推動制造業(yè)高質(zhì)量發(fā)展的大環(huán)境下,佛山市某工廠統(tǒng)籌各類資源,進行了積極的改革探索.下表是該工廠每月生產(chǎn)的一種核心產(chǎn)品的產(chǎn)量(件)與相應的生產(chǎn)總成本(萬元)的四組對照數(shù)據(jù).

5

7

9

11

200

298

431

609

工廠研究人員建立了的兩種回歸模型,利用計算機算得近似結果如下:

模型①:;

模型②:.

其中模型①的殘差(實際值預報值)圖如圖所示:

1)根據(jù)殘差分析,判斷哪一個更適宜作為關于的回歸方程?并說明理由;

2)市場前景風云變幻,研究人員統(tǒng)計了20個月的產(chǎn)品銷售單價,得到頻數(shù)分布表如下:

銷售單價分組(萬元)

頻數(shù)

10

6

4

若以這20個月銷售單價的平均值定為今后的銷售單價(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),結合你對(1)的判斷,當月產(chǎn)量為12件時,預測當月的利潤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,是等邊三角形,,,.

1)若,求證:平面;

2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列為等差數(shù)列,且,

(Ⅰ)求數(shù)列的通項,及前項和

(Ⅱ)請你在數(shù)列的前4項中選出三項,組成公比的絕對值小于1的等比數(shù)列的前3項,并記數(shù)列的前n項和為.若對任意正整數(shù),不等式恒成立,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】港珠澳大橋是一座具有劃時代意義的大橋.它連通了珠海、香港、澳門三地,大大縮短了三地的時空距離,盤活了珠江三角洲的經(jīng)濟,被譽為新的世界七大奇跡.截至201910238點,珠海公路口岸共驗放出入境旅客超過1400萬人次,日均客流量已經(jīng)達到4萬人次,驗放出入境車輛超過70萬輛次,2019年春節(jié)期間,客流再次大幅增長,日均客流達8萬人次,單日客流量更是創(chuàng)下11.3萬人次的最高紀錄.2019年從五月一日開始的連續(xù)100天客流量頻率分布直方圖如圖.

1)求這100天中,客流量超過4萬的頻率;

2)①同一組數(shù)據(jù)用該區(qū)間的中點值代替,根據(jù)頻率分布直方圖.估計客流量的平均數(shù).

②求客流量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩個班級(各40名學生)進行一門考試,為易于統(tǒng)計分析,將甲、乙兩個班學生的成績分成如下四組:,,,并分別繪制了如下的頻率分布直方圖:

規(guī)定:成績不低于90分的為優(yōu)秀,低于90分的為不優(yōu)秀.

1)根據(jù)這次抽查的數(shù)據(jù),填寫下面的列聯(lián)表:

優(yōu)秀

不優(yōu)秀

合計

甲班

乙班

合計

2)根據(jù)(1)中的列聯(lián)表,能否有的把握認為成績是否優(yōu)秀與班級有關?

附:臨界值參考表與參考公式

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)新研發(fā)了一種產(chǎn)品,產(chǎn)品的成本由原料成本及非原料成本組成.每件產(chǎn)品的非原料成本(元)與生產(chǎn)該產(chǎn)品的數(shù)量(千件)有關,經(jīng)統(tǒng)計得到如下數(shù)據(jù):

x

1

2

3

4

5

6

7

8

y

112

61

44.5

35

30.5

28

25

24

根據(jù)以上數(shù)據(jù),繪制了散點圖.觀察散點圖,兩個變量不具有線性相關關系,現(xiàn)考慮用反比例函數(shù)模型和指數(shù)函數(shù)模型分別對兩個變量的關系進行擬合,已求得:用指數(shù)函數(shù)模型擬合的回歸方程為,的相關系數(shù);,,,,(其中);

1)用反比例函數(shù)模型求關于的回歸方程;

2)用相關系數(shù)判斷上述兩個模型哪一個擬合效果更好(精確到0.01),并用其估計產(chǎn)量為10千件時每件產(chǎn)品的非原料成本.

參考數(shù)據(jù):,

參考公式:對于一組數(shù)據(jù),,,,其回歸直線的斜率和截距的最小二乘估計分別為:,,相關系數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校高三年級為了解學生在家參加線上教學的學習情況,對高三年級進行了網(wǎng)上數(shù)學測試,他們的成績在80分到150分之間,根據(jù)統(tǒng)計數(shù)據(jù)得到如下頻率分布直方圖:

若成績在區(qū)左側,認為該學生屬于網(wǎng)課潛能生,成績在區(qū)間之間,認為該學生屬于網(wǎng)課中等生,成績在區(qū)間右側,認為該學生屬于網(wǎng)課優(yōu)等生

1)若小明的測試成績?yōu)?/span>100分,請判斷小明是否屬于網(wǎng)課潛能生,并說明理由:(參考數(shù)據(jù):計算得

2)該校利用分層抽樣的方法從樣本的,兩組中抽出6人,進行教學反饋,并從這6人中再抽取2人,贈送一份學習資料,求獲贈學習資料的2人中恰有1人成績超過90分的概率.

查看答案和解析>>

同步練習冊答案